Home
Class 12
CHEMISTRY
Cr(OH)(3)+H(2)O(2)overset("Alkali")(to)C...

`Cr(OH)_(3)+H_(2)O_(2)overset("Alkali")(to)CrO_(4)^(-2)+H_(2)O` the number of `OH^(-)` required to balance the above equation

A

1

B

3

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To balance the chemical equation \( \text{Cr(OH)}_3 + \text{H}_2\text{O}_2 \xrightarrow{\text{Alkali}} \text{CrO}_4^{2-} + \text{H}_2\text{O} \) and determine the number of hydroxide ions (\( \text{OH}^- \)) required, we can follow these steps: ### Step 1: Identify the Oxidation and Reduction Half-Reactions The first step is to identify the oxidation and reduction half-reactions involved in the process. - **Oxidation Half-Reaction:** \[ \text{Cr(OH)}_3 \rightarrow \text{CrO}_4^{2-} \] - **Reduction Half-Reaction:** \[ \text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} \] ### Step 2: Balance the Oxidation Half-Reaction Next, we need to balance the oxidation half-reaction for oxygen and hydrogen. - On the left, there are 3 oxygen atoms from \( \text{Cr(OH)}_3 \) and on the right, there are 4 oxygen atoms in \( \text{CrO}_4^{2-} \). To balance the oxygen atoms, we add 1 water molecule to the left side: \[ \text{Cr(OH)}_3 + \text{H}_2\text{O} \rightarrow \text{CrO}_4^{2-} \] - Now, we balance the hydrogen atoms. The left side has 5 hydrogen atoms (3 from \( \text{Cr(OH)}_3 \) and 2 from \( \text{H}_2\text{O} \)), while the right side has none. To balance the hydrogen atoms, we add 5 hydroxide ions (\( \text{OH}^- \)) to the left side: \[ \text{Cr(OH)}_3 + \text{H}_2\text{O} + 5 \text{OH}^- \rightarrow \text{CrO}_4^{2-} + 5 \text{H}_2\text{O} \] ### Step 3: Balance the Reduction Half-Reaction Now we balance the reduction half-reaction. - The reduction half-reaction is: \[ \text{H}_2\text{O}_2 + 2 \text{OH}^- \rightarrow 2 \text{H}_2\text{O} \] ### Step 4: Multiply the Half-Reactions To combine the half-reactions, we need to ensure that the number of electrons lost in oxidation equals the number of electrons gained in reduction. - From the oxidation half-reaction, we have 3 electrons involved. - From the reduction half-reaction, we have 2 electrons involved. To balance the electrons, we multiply the oxidation half-reaction by 2 and the reduction half-reaction by 3. ### Step 5: Combine the Half-Reactions After multiplying, we combine the two half-reactions: - Oxidation (multiplied by 2): \[ 2 \text{Cr(OH)}_3 + 2 \text{H}_2\text{O} + 10 \text{OH}^- \rightarrow 2 \text{CrO}_4^{2-} + 10 \text{H}_2\text{O} \] - Reduction (multiplied by 3): \[ 3 \text{H}_2\text{O}_2 + 6 \text{H}_2\text{O} + 6 \text{e}^- \rightarrow 6 \text{H}_2\text{O} + 6 \text{OH}^- \] ### Step 6: Final Balancing Now we can combine the two reactions: \[ 2 \text{Cr(OH)}_3 + 3 \text{H}_2\text{O}_2 + 10 \text{OH}^- \rightarrow 2 \text{CrO}_4^{2-} + 10 \text{H}_2\text{O} + 6 \text{OH}^- \] ### Step 7: Calculate the Number of \( \text{OH}^- \) Ions To find the total number of \( \text{OH}^- \) ions required: - From the oxidation half-reaction, we have 10 \( \text{OH}^- \). - From the reduction half-reaction, we have 6 \( \text{OH}^- \). Thus, the total number of \( \text{OH}^- \) ions required is: \[ 10 - 6 = 4 \] ### Final Answer The number of \( \text{OH}^- \) ions required to balance the equation is **4**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Mg(s)+H_(2)O(l) overset("warm")toMg(OH)_(2)+H_(2)uarr

Mg(s)+H_(2)O(l) overset("warm")toMg(OH)_(2)+H_(2)uarr

Ca(s)+H_(2)O(l) overset(R.T.)toCa(OH)_(2)+H_(2)uarr

Ca(s)+H_(2)O(l) overset(R.T.)toCa(OH)_(2)+H_(2)uarr

K_(2)Cr_(2)O_(7) overset(Delta) to K_(2)CrO_(4)+Cr_(2)O_(3)+O_(2)uarr

K_(2)Cr_(2)O_(7) overset(Delta) to K_(2)CrO_(4)+Cr_(2)O_(3)+O_(2)uarr

C_(6)H_(12)O_(2)(X) overset(H_(3)O^(+))toC_(2)H_(5)CO_(2)H+C_(3)H_(7)OH , X is

CH_(3)OH+C_(2)H_(5)OH overset(H^(o+))rarr Products

4K_(2) Cr_(2) O_(7) overset(heat)rarr 4K_(2) CrO_(4) + 3O_(2) + X . In the above reaction X is

Can the reaction, Cr_(2)O_(7)^(2-) + H_(2)O rarr 2CrO_(4)^(2-) + 2H^(+) be regarded as a redox reaction ?