Home
Class 12
CHEMISTRY
When the molar concentrations of SO(2), ...

When the molar concentrations of `SO_(2), O_(2) and SO_(3)` at equilbrium at certain temperature are `0.5 , 0.25 ` & 0.25 M respectively, `k_(c) ` for `2SO_(3) hArr 2SO_(2) + O_(2)` is

A

0.5 `"lit-mol"^(-1)`

B

1 `"lit"^(2)-mol^(-2)`

C

1 `"mol-lit"^(-1)`

D

0.25 `mol^(2)- lit^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant \( K_c \) for the reaction: \[ 2SO_3 \rightleftharpoons 2SO_2 + O_2 \] we will use the equilibrium concentrations provided: - \([SO_2] = 0.5 \, M\) - \([O_2] = 0.25 \, M\) - \([SO_3] = 0.25 \, M\) ### Step 1: Write the expression for \( K_c \) The equilibrium constant \( K_c \) for the reaction is given by the formula: \[ K_c = \frac{[SO_2]^2 [O_2]}{[SO_3]^2} \] ### Step 2: Substitute the equilibrium concentrations into the expression Now, we will substitute the equilibrium concentrations into the expression we wrote in Step 1: \[ K_c = \frac{(0.5)^2 (0.25)}{(0.25)^2} \] ### Step 3: Calculate the values Now we will calculate the values step by step: 1. Calculate \((0.5)^2\): \[ (0.5)^2 = 0.25 \] 2. Calculate \((0.25)^2\): \[ (0.25)^2 = 0.0625 \] 3. Substitute these values into the \( K_c \) expression: \[ K_c = \frac{0.25 \times 0.25}{0.0625} \] 4. Calculate \( 0.25 \times 0.25 \): \[ 0.25 \times 0.25 = 0.0625 \] 5. Now substitute this back into the \( K_c \) equation: \[ K_c = \frac{0.0625}{0.0625} = 1 \] ### Final Answer Thus, the equilibrium constant \( K_c \) for the reaction is: \[ K_c = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Formation of SO_(3) by SO_(2) and O_(2) is favoured by :-

The reaction 2SO_(2)+2O_(2)hArr 2SO_(3) will be favoured by

For the reaction 2SO_2 +O_2 hArr 2SO_3 the units of K are

A reaction system in equilibrium according to reaction 2SO_(2)(g)+O_(2)(g)hArr2SO_(3)(g) in one litre vessel at a given temperature was found to be 0.12 mole each of SO_(2) and SO_(3) and 5 mole of O_(2) In another vessel of one litre contains 32 g of SO_(2) at the same temperature. What mass of O_(2) must be added to this vessel in order that at equilibrium 20% of SO_(2) is oxidized to SO_(3) ?

In the reaction, 2SO_(2)(s)+O_(2)(g) hArr 2SO_(3)(g)+X cal , most favourable conditions of temperature and pressure for greater yield of SO_(3) are

At 700K , for the reaction 2SO_(2)(g)+O_(2)(g)hArr2SO_(3)(g) the K_(p) "is" 3.2xx10^(4) . At the same temperature the K_(p) for the reaction SO_(3)(g)hArrSO_(2)(g)+0.50O_(2)(g) is:

One mole of SO_(3) was placed in a two litre vessel at a certain temperature. The following equilibrium was established in the vessel 2SO_(3)(g)hArr2SO_(2)(g)+O_(2)(g) The equilibrium mixture reacts with 0.2 mole KMnO_(4) in acidic medium. Hence, K_(c) is :

In the following gaseous pjhase equlibrium at constant temperature the concentration of [SO_(2)]=3.0xx10^(-3)M.[O_(2)]=3.5xx10^(-3)M.[SO_(3)]=5.0xx10^(-2)M. Calculate equlibarium constant for both the directions. 2SO_(2)(g)+O_(2)(g)hArr2SO_(3)(g)

One mole of SO_(3) was placed in a litre reaction flask at a given temperature when the reaction equilibrium was established in the reaction. 2SO_(3) hArr 2SO_(2)+O_(2) the vessel was found to contain 0.6 mol of SO_(2) . The value of the equilibrium constant is

In the reaction SO_2 + O_3 → SO_3 + O_2 Equivalent weight of SO_2 will be