Home
Class 12
CHEMISTRY
{:(List - I("Reaction"), List -II((K(p))...

`{:(List - I("Reaction"), List -II((K_(p))/(K_(c)))),((A)A_(2)(g) + 3B_(2)(g) hArr 2AB_(3)(g),(P)(RT)^(-2)),((B) A_(2) (g)+ B_(2) (g) hArr 2 AB(g) ,(Q) (RT)^(@)),((C) A(s) + (3)/(2) B_(2) (g) hArr AB_(3)(g),(R) (RT)^(1//2)),((D) AB_(2) (g) hArr AB(g) +(1)/(2) B_(2)(g),(S) (RT)^(-1//2)):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to match each reaction with its corresponding \( \frac{K_p}{K_c} \) value based on the relationship between \( K_p \) and \( K_c \) for a given reaction. The relationship is given by: \[ K_p = K_c \cdot (RT)^{\Delta n} \] where \( \Delta n \) is the change in the number of moles of gas, calculated as: \[ \Delta n = \text{(moles of gaseous products)} - \text{(moles of gaseous reactants)} \] Now, let's analyze each reaction step by step. ### Step 1: Analyze Reaction A **Reaction:** \( A_2(g) + 3B_2(g) \rightleftharpoons 2AB_3(g) \) - **Moles of Products:** 2 (from \( 2AB_3 \)) - **Moles of Reactants:** 1 (from \( A_2 \)) + 3 (from \( 3B_2 \)) = 4 \[ \Delta n = 2 - 4 = -2 \] Thus, \[ \frac{K_p}{K_c} = (RT)^{-2} \quad \text{(which corresponds to P)} \] ### Step 2: Analyze Reaction B **Reaction:** \( A_2(g) + B_2(g) \rightleftharpoons 2AB(g) \) - **Moles of Products:** 2 (from \( 2AB \)) - **Moles of Reactants:** 1 (from \( A_2 \)) + 1 (from \( B_2 \)) = 2 \[ \Delta n = 2 - 2 = 0 \] Thus, \[ \frac{K_p}{K_c} = (RT)^{0} \quad \text{(which corresponds to Q)} \] ### Step 3: Analyze Reaction C **Reaction:** \( A(s) + \frac{3}{2}B_2(g) \rightleftharpoons AB_3(g) \) - **Moles of Products:** 1 (from \( AB_3 \)) - **Moles of Reactants:** 0 (from solid \( A \)) + 1.5 (from \( \frac{3}{2}B_2 \)) = 1.5 \[ \Delta n = 1 - 1.5 = -0.5 \] Thus, \[ \frac{K_p}{K_c} = (RT)^{-\frac{1}{2}} \quad \text{(which corresponds to S)} \] ### Step 4: Analyze Reaction D **Reaction:** \( AB_2(g) \rightleftharpoons AB(g) + \frac{1}{2}B_2(g) \) - **Moles of Products:** 1 (from \( AB \)) + 0.5 (from \( \frac{1}{2}B_2 \)) = 1.5 - **Moles of Reactants:** 1 (from \( AB_2 \)) \[ \Delta n = 1.5 - 1 = 0.5 \] Thus, \[ \frac{K_p}{K_c} = (RT)^{\frac{1}{2}} \quad \text{(which corresponds to R)} \] ### Final Matching Now we can summarize the matches: - A corresponds to P - B corresponds to Q - C corresponds to S - D corresponds to R ### Final Answer - A - P - B - Q - C - S - D - R
Promotional Banner

Similar Questions

Explore conceptually related problems

{:(List - I , List - II),((A) N_(2) + O_(2) hArr 2NO,(P) (atm)^(-2)),((B) 2SO_(2)(g) + O_(2) hArr 2SO_(3)(g),(Q) "No unit"),((C) H_(2) + I_(2) hArr 2HI,(R)"No cffect of pressure"),((D) N_(2)(g) + 3H_(2) (g) hArr 2NH_(3)(g), (S) "High pressure favours forward reaction"):}

For the reaction CO(g)+(1)/(2) O_(2)(g) hArr CO_(2)(g),K_(p)//K_(c) is

Given N_(2)(g)+3H_(2)(g)hArr2NH_(3)(g),K_(1) N_(2)(g)+O_(2)(g)hArr2NO(g),K_(2) H_(2)(g)+(1)/(2)O_(2)hArrH_(2)O(g),K_(3) The equilibrium constant for 2NH_(3)(g)+(5)/(2)O_(2)(g)hArr2NO(g)+3H_(2)O(g) will be

Given N_(2)(g)+3H_(2)(g)hArr2NH_(3)(g),K_(1) N_(2)(g)+O_(2)(g)hArr2NO(g),K_(2) H_(2)(g)+(1)/(2)O_(2)hArrH_(2)O(g),K_(3) The equilibrium constant for 2NH_(3)(g)+(5)/(2)O_(2)(g)hArr2NO(g)+3H_(2)O(g) will be

K_(p)//K_(c) for the reaction CO(g)+1/2 O_(2)(g) hArr CO_(2)(g) is

K_(p)//K_(c) for the reaction CO(g)+1/2 O_(2)(g) hArr CO_(2)(g) is

Write the relation between K_(p)and K_(c) for the following reactions (i) N_(2)(g)+3H_(2)(g)hArr2H_(2)(g)+O_(2)(g) (ii) 2H_(2)O(g)hArr2H_(2)(g)+O_(2)(g)

Write the relation between K_(p) " and " K_(c) for the reaction: N_(2)(g) +3H_(2) (g) hArr 2NH_(3)(g)

{:(List - I , List - II),((A)CaCO_(3) hArr CaO + CO_(3),(P) K_(p) = K_(c)),((B) NH_(4) HS hArr NH_(3)+ H_(2)S,(Q) "High pressure favours backward reaction"),((C) PCI_(5) hArr PCI_(3) + CI_(2),(R) K_(p) = K_(c) (RT)),((D) 3Fe(s) + 4H_(2) O(g) hArr Fe_(3) O_(4) (s) + 4H_(2)(g), (S) " Heterogeneous equilibrium "):}

{:("Column-I (F.R.Favourable)","COlumn-II"),((A) H_(2(g)) + I_(2(g)) hArr 2HI_((g)) + Q,(P)"High temperature"),((B) 2SO_(2(g)) + O_(2(g)) hArr 2SO_(3(g)) + Q,(Q)"Low temperature "),((C) 2NH_(3(g)) hArr N_(2(g)) + 3H_(2(g)) - Q,(R)"High pressure"),((D) PCl_(5(g)) hArr PCl_(3(g)) + Cl_(2(g)) - Q,(S)"Low pressure"):}