Home
Class 12
CHEMISTRY
For the equilibrium, N(2) O(4) hArr 2NO(...

For the equilibrium, `N_(2) O_(4) hArr 2NO_(2) , (G^(@)N_(2)O_(4))_(298)` = 100 kJ/mole and `(G^(@) NO_(2))_(298)` = 50 kj/mole . When 5 mole / lit of each is taken, the value of `Delta ` G for the reaction.

A

3.99 kJ `"mole"^(-1)`

B

39.9 kJ `"mole"^(-1)`

C

3.99 j `"mole"^(-1)`

D

39.9 J `"mole"^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Write the reaction and identify the standard free energy changes. The equilibrium reaction is: \[ N_2O_4 \rightleftharpoons 2NO_2 \] Given: - Standard free energy of formation for \( N_2O_4 \) at 298 K, \( \Delta G^\circ (N_2O_4) = 100 \, \text{kJ/mol} \) - Standard free energy of formation for \( NO_2 \) at 298 K, \( \Delta G^\circ (NO_2) = 50 \, \text{kJ/mol} \) ### Step 2: Calculate the standard change in free energy (\( \Delta G^\circ \)) for the reaction. Using the formula: \[ \Delta G^\circ = \sum \Delta G^\circ_{\text{products}} - \sum \Delta G^\circ_{\text{reactants}} \] For our reaction: \[ \Delta G^\circ = 2 \times \Delta G^\circ (NO_2) - \Delta G^\circ (N_2O_4) \] Substituting the values: \[ \Delta G^\circ = 2 \times 50 \, \text{kJ/mol} - 100 \, \text{kJ/mol} = 100 \, \text{kJ/mol} - 100 \, \text{kJ/mol} = 0 \, \text{kJ/mol} \] ### Step 3: Calculate the reaction quotient (\( Q \)). The reaction quotient \( Q \) is given by: \[ Q = \frac{[NO_2]^2}{[N_2O_4]} \] Given that the concentrations are 5 moles per liter for both \( N_2O_4 \) and \( NO_2 \): \[ Q = \frac{(5)^2}{5} = \frac{25}{5} = 5 \] ### Step 4: Use the Gibbs free energy equation to find \( \Delta G \). The equation relating \( \Delta G \) to \( \Delta G^\circ \) and \( Q \) is: \[ \Delta G = \Delta G^\circ + RT \ln Q \] Where: - \( R = 8.314 \, \text{J/(mol K)} = 0.008314 \, \text{kJ/(mol K)} \) - \( T = 298 \, \text{K} \) Substituting the values: \[ \Delta G = 0 + (0.008314 \, \text{kJ/(mol K)} \times 298 \, \text{K}) \ln(5) \] Calculating \( \ln(5) \): \[ \ln(5) \approx 1.609 \] Now substituting this back: \[ \Delta G = 0.008314 \times 298 \times 1.609 \approx 3.994 \, \text{kJ/mol} \] ### Step 5: Final answer. Thus, the value of \( \Delta G \) for the reaction is approximately: \[ \Delta G \approx 3.994 \, \text{kJ/mol} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For the equilibrium, N_(2)O_(4)hArr2NO_(2) , (G_(N_(2)O_(4))^(@))_(298)=100kJ//mol and (G_(NO_(2))^(@))_(298)=50kJ//mol . ( a ) When 5 mol//litre of each is taken, calculate the value of DeltaG for the reaction at 298 K . ( b ) Find the direction of reaction.

For the equilibrium at 298 K, N_(2)O_(4)(g) hArr 2NO_(2)(g), G_(N_(2)O_(4))^(ɵ)=100 kJ mol^(-1) and G_(NO_(2))^(ɵ)=50 kJ mol^(-1) . If 5 mol of N_(2)O_(4) and 2 moles of NO_(2) are taken initially in one litre container than which statement are correct.

The number of mole of N_(2)O_(4) in 276 g N_(2)O_(4) are …..

For the reaction: N_(2)O_(4)(g) hArr 2NO_(2)(g) (i)" " In a mixture of 5 mol NO_(2) and 5 mol N_(2)O_(4) and pressure of 20 bar. Calculate the value of DeltaG for the reaction. Given DeltaG_(f)^(@) (NO_(2)) = 50 KJ/mol, DeltaG_(f)^(@) ((N_(2)O_(4)) =100 KJ/mol and T=298 K. (ii) Predict the direction in which the reaction will shift, in order to attain equilibrium [Given at T=298 K, 2.303 "RT" = 5.7 KJ/mol.]

For the reaction: N_(2)O_(4)(g) hArr 2NO_(2)(g) (i)" " In a mixture of 5 mol NO_(2) and 5 mol N_(2)O_(4) and pressure of 20 bar. Calculate the value of DeltaG for the reaction. Given DeltaG_(f)^(@) (NO_(2)) = 50 KJ/mol, DeltaG_(f)^(@) ((N_(2)O_(4)) =100 KJ/mol and T=298 K. (ii) Predict the direction in which the reaction will shift, in order to attain equilibrium [Given at T=298 K, 2.303 "RT" = 5.7 KJ/mol.]

O(g) + 2e^(-) to O^(2-)(g) , DeltaH_(eg) = 744.7 kJ/mole . The positive value of DeltaH_(eg) is due to :

N_(2)O_(4(g))rArr2NO_(2),K_(c)5.7xx10^(-9) at 298 K At equilibrium :-

At the equilibrium of the reaction , N_(2)O_(4)(g)rArr2NO_(2)(g) , the observed molar mass of N_(2)O_(4) is 77.70 g . The percentage dissociation of N_(2)O_(4) is :-

N_(2)O_(4(g))rArr2NO_(2),K_(c)=5.7xx10^(-9) at 298 K. At equilibrium :-

For the reaction, N_(2)O_(4)(g) hArr 2NO_(2)(g) , the concentration of an equilibrium mixture at 298 K is N_(2)O_(4)=4.50xx10^(-2) mol L^(-1) and NO_(2)=1.61xx10^(-2) mol L^(-1) . What is the value of equilibrium constant?