Home
Class 12
CHEMISTRY
For the reaction at 298K: A((g)) +B((g...

For the reaction at 298K: `A_((g)) +B_((g)) hArr C_((g)) + D_((g)) Delta H^(@) + `29.8kcal and `Delta S^(@) = 100cal K^(-1)`. Find the value of equilibrium constant.

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant \( K \) for the reaction at 298 K, we can use the Gibbs free energy change (\( \Delta G^\circ \)) and the relationship between \( \Delta G^\circ \) and the equilibrium constant \( K \). ### Step-by-Step Solution: 1. **Identify the given data**: - \( \Delta H^\circ = 29.8 \, \text{kcal} \) - \( \Delta S^\circ = 100 \, \text{cal K}^{-1} \) - Temperature \( T = 298 \, \text{K} \) 2. **Convert units**: - Convert \( \Delta H^\circ \) from kcal to cal: \[ \Delta H^\circ = 29.8 \, \text{kcal} \times 1000 \, \text{cal/kcal} = 29800 \, \text{cal} \] 3. **Calculate \( \Delta G^\circ \)** using the formula: \[ \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \] Substitute the values: \[ \Delta G^\circ = 29800 \, \text{cal} - 298 \, \text{K} \times 100 \, \text{cal K}^{-1} \] \[ \Delta G^\circ = 29800 \, \text{cal} - 29800 \, \text{cal} = 0 \, \text{cal} \] 4. **Relate \( \Delta G^\circ \) to the equilibrium constant \( K \)**: The relationship is given by: \[ \Delta G^\circ = -RT \ln K \] Where \( R \) (the gas constant) is \( 1.987 \, \text{cal K}^{-1} \text{mol}^{-1} \). 5. **Substitute the values**: Since \( \Delta G^\circ = 0 \): \[ 0 = -RT \ln K \] This implies: \[ RT \ln K = 0 \] 6. **Solve for \( K \)**: Since \( RT \) is not zero, we can conclude: \[ \ln K = 0 \] Therefore: \[ K = e^0 = 1 \] ### Final Answer: The equilibrium constant \( K \) is \( 1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction at 298 K A(g) + B(g) hArr C(g) + D(g) If DeltaH^(@) =29.8 Kcal and DeltaS^(@)=0.1 Kcal K^(-1) then calculate reaction constant (k)

The gaseous reaction A_((g)) + B_((g)) hArr 2C_((g)) + D_((g)) + q kJ is most favoured at :

For the reaction at 25^(@)C, C_(2)O_(4)(l) rarr 2XO_(2)(g) Delta H =2.1 kcal and DeltaS=20 cal K^(-1) . The reaction would be :

For the reaction at 300 K A(g)hArrV(g)+S(g) Delta_(r)H^(@)=-30kJ//mol, Delta_(r)S^(@)=-0.1kJK^(-1).mol^(-1) What is the value of equilibrium constant ?

The K_c for given reaction will be A_2 (g) +2B (g) hArr C(g) +2D(s)

For a gaseous reaction A(g) + 3 B(g) rightarrow 3C(g) + 3D(g) Delta E is 27 kcal at 37^(@)C . Assuming R = 2 cal K^(-1) mol^(-1) the value of Delta H for the above reaction will be

For the reaction, A(s) + 3B(g) rarr 4C(g) + d(l) Delta H and Delta U are related as :

A _ ("(l)") to 2 B _ ( "(g)") Delta U = 2. 1 kcal , Delta S = 20 Cal/k, T = 300 K. Find Delta G ( in kcal )

A _ ("(l)") to 2 B _ ( "(g)") Delta U = 2. 1 kcal , Delta S = 20 Cal/k, T = 300 K. Find Delta G ( in kcal )

A _ ("(l)") to 2 B _ ( "(g)") Delta U = 2. 1 kcal , Delta S = 20 Cal/k, T = 300 K. Find Delta G ( in kcal )