Home
Class 12
CHEMISTRY
K(p) for the reaction N(2) + 3H(2) hArr ...

`K_(p)` for the reaction `N_(2) + 3H_(2) hArr 2NH_(3) `, is `1.6 xx 10^(-4) atm^(-2)` at `400^(@)` C. What will be `K_(p)` at `500^(@)`C ? Heat of reaction in this temperature range is-25.14 Kcal.

A

`1.43 xx 10^(-5) atm^(-2)`

B

`1.43 xx 10^(5) atm^(-2)`

C

`1.43 xx 10^(-5) atm^(2)`

D

`1.43 xx 10^(5) atm^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( K_p \) at \( 500^\circ C \) for the reaction \[ N_2 + 3H_2 \rightleftharpoons 2NH_3 \] given that \( K_p \) at \( 400^\circ C \) is \( 1.6 \times 10^{-4} \, \text{atm}^{-2} \) and the heat of reaction \( \Delta H \) is \( -25.14 \, \text{kcal} \), we can use the van 't Hoff equation: \[ \log \frac{K_2}{K_1} = \frac{\Delta H}{2.303 R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \] ### Step 1: Convert temperatures to Kelvin - \( T_1 = 400^\circ C = 400 + 273 = 673 \, K \) - \( T_2 = 500^\circ C = 500 + 273 = 773 \, K \) ### Step 2: Convert \( \Delta H \) to calories Since \( \Delta H \) is given in kcal, we convert it to calories: \[ \Delta H = -25.14 \, \text{kcal} \times 1000 = -25140 \, \text{cal} \] ### Step 3: Use the value of \( R \) The value of \( R \) in calories is \( 2 \, \text{cal/(mol K)} \). ### Step 4: Substitute the values into the van 't Hoff equation We can now substitute \( K_1 = 1.6 \times 10^{-4} \), \( T_1 = 673 \, K \), \( T_2 = 773 \, K \), \( \Delta H = -25140 \, \text{cal} \), and \( R = 2 \, \text{cal/(mol K)} \): \[ \log \frac{K_2}{1.6 \times 10^{-4}} = \frac{-25140}{2.303 \times 2} \left( \frac{1}{673} - \frac{1}{773} \right) \] ### Step 5: Calculate the right-hand side First, calculate \( \frac{1}{673} - \frac{1}{773} \): \[ \frac{1}{673} \approx 0.001484 \quad \text{and} \quad \frac{1}{773} \approx 0.001292 \] \[ \frac{1}{673} - \frac{1}{773} \approx 0.001484 - 0.001292 = 0.000192 \] Now, calculate the entire right-hand side: \[ \frac{-25140}{2.303 \times 2} \times 0.000192 \] Calculating \( 2.303 \times 2 = 4.606 \): \[ \frac{-25140}{4.606} \approx -5467.23 \] Now multiply by \( 0.000192 \): \[ -5467.23 \times 0.000192 \approx -1.050 \] ### Step 6: Solve for \( K_2 \) Now we have: \[ \log K_2 - \log(1.6 \times 10^{-4}) = -1.050 \] \[ \log K_2 = -1.050 + \log(1.6 \times 10^{-4}) \] Calculating \( \log(1.6 \times 10^{-4}) \): \[ \log(1.6) \approx 0.2041 \quad \text{and} \quad \log(10^{-4}) = -4 \] \[ \log(1.6 \times 10^{-4}) \approx 0.2041 - 4 = -3.7959 \] Now substituting back: \[ \log K_2 = -1.050 - 3.7959 \approx -4.8459 \] Converting back from log: \[ K_2 = 10^{-4.8459} \approx 1.429 \times 10^{-5} \, \text{atm}^{-2} \] ### Final Answer Thus, the value of \( K_p \) at \( 500^\circ C \) is approximately: \[ K_p \approx 1.43 \times 10^{-5} \, \text{atm}^{-2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

K_(p) for the reaction N_(2)+3H_(2) hArr 2NH_(3) at 400^(@)C is 1.64xx10^(-4) atm^(-2) . Find K_(c) .

The equilibrium constant K_(p) , for the reaction N_(2)(g)+3H_(2)(g) hArr 2NH_(3)(g) is 1.6xx10^(-4) at 400^(@)C . What will be the equilibrium constant at 500^(@)C if the heat of reaction in this temperature range is -25.14 kcal?

For the reactions, N_2(g) + 3H_2(g) hArr 2NH_3(g), " " K_p=K_c (RT)^(…..)

K_(c) for the reaction N_(2)+3H_(2) hArr 2NH_(3) is 0.5 mol^(-2) L^(2) at 400 K . Find K_(p) . Given R=0.082 L-"atm K"^(-1) mol^(-1)

For the reaction, N_(2)(g)+3H_(2)(g) hArr 2NH_(3)(g) , the units of K_(p) are …………

The equilibrium constant K_(p) for the reaction, N_(2)+3H_(2) hArr 2NH_(3) is 1.64xx10^(-4) at 400^(@)C and 0.144xx10^(-4) at 500^(@)C . Calculate the mean heat of formation of 1 mol of NH_(3) from its elements in this temperature range.

For the reaction, N_(2)+3H_(2)hArr2NH_(3) , the units of K_(c) "and" K_(p) respectively are:

At 450^(@)C the equilibrium constant K_(p) for the reaction N_(2)+3H_(2) hArr 2NH_(3) was found to be 1.6xx10^(-5) at a pressure of 200 atm. If N_(2) and H_(2) are taken in 1:3 ratio. What is % of NH_(3) formed at this temperature?

For a reaction N_(2)+3H_(2)hArr2NH_(3) , the value of K_(C) does not depends upon:

N_(2) + 3H_(2) hArr 2NH_(3)" "K=4xx 10^(6)"at"298 " "K=41 "at" 400 k Which statements is correct?