To find the value of \( K_p \) at \( 500^\circ C \) for the reaction
\[
N_2 + 3H_2 \rightleftharpoons 2NH_3
\]
given that \( K_p \) at \( 400^\circ C \) is \( 1.6 \times 10^{-4} \, \text{atm}^{-2} \) and the heat of reaction \( \Delta H \) is \( -25.14 \, \text{kcal} \), we can use the van 't Hoff equation:
\[
\log \frac{K_2}{K_1} = \frac{\Delta H}{2.303 R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right)
\]
### Step 1: Convert temperatures to Kelvin
- \( T_1 = 400^\circ C = 400 + 273 = 673 \, K \)
- \( T_2 = 500^\circ C = 500 + 273 = 773 \, K \)
### Step 2: Convert \( \Delta H \) to calories
Since \( \Delta H \) is given in kcal, we convert it to calories:
\[
\Delta H = -25.14 \, \text{kcal} \times 1000 = -25140 \, \text{cal}
\]
### Step 3: Use the value of \( R \)
The value of \( R \) in calories is \( 2 \, \text{cal/(mol K)} \).
### Step 4: Substitute the values into the van 't Hoff equation
We can now substitute \( K_1 = 1.6 \times 10^{-4} \), \( T_1 = 673 \, K \), \( T_2 = 773 \, K \), \( \Delta H = -25140 \, \text{cal} \), and \( R = 2 \, \text{cal/(mol K)} \):
\[
\log \frac{K_2}{1.6 \times 10^{-4}} = \frac{-25140}{2.303 \times 2} \left( \frac{1}{673} - \frac{1}{773} \right)
\]
### Step 5: Calculate the right-hand side
First, calculate \( \frac{1}{673} - \frac{1}{773} \):
\[
\frac{1}{673} \approx 0.001484 \quad \text{and} \quad \frac{1}{773} \approx 0.001292
\]
\[
\frac{1}{673} - \frac{1}{773} \approx 0.001484 - 0.001292 = 0.000192
\]
Now, calculate the entire right-hand side:
\[
\frac{-25140}{2.303 \times 2} \times 0.000192
\]
Calculating \( 2.303 \times 2 = 4.606 \):
\[
\frac{-25140}{4.606} \approx -5467.23
\]
Now multiply by \( 0.000192 \):
\[
-5467.23 \times 0.000192 \approx -1.050
\]
### Step 6: Solve for \( K_2 \)
Now we have:
\[
\log K_2 - \log(1.6 \times 10^{-4}) = -1.050
\]
\[
\log K_2 = -1.050 + \log(1.6 \times 10^{-4})
\]
Calculating \( \log(1.6 \times 10^{-4}) \):
\[
\log(1.6) \approx 0.2041 \quad \text{and} \quad \log(10^{-4}) = -4
\]
\[
\log(1.6 \times 10^{-4}) \approx 0.2041 - 4 = -3.7959
\]
Now substituting back:
\[
\log K_2 = -1.050 - 3.7959 \approx -4.8459
\]
Converting back from log:
\[
K_2 = 10^{-4.8459} \approx 1.429 \times 10^{-5} \, \text{atm}^{-2}
\]
### Final Answer
Thus, the value of \( K_p \) at \( 500^\circ C \) is approximately:
\[
K_p \approx 1.43 \times 10^{-5} \, \text{atm}^{-2}
\]
---