Home
Class 12
CHEMISTRY
At elevated temperature , PCl(5) dissoci...

At elevated temperature , `PCl_(5)` dissociates as `PCI_(5(a)) hArr PCl_(3(g)) + Cl_(2(g)) . " At " 300^(@) C, K_(p) = 11.8` and
`[PCl_(3)] = [Cl_(2)] = 0.01 "mol" L^(-1)` at equilibrium `[PCl_(5)] = x xx 10^(-4) "mol" L^(-1)` . What is the value of x ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Write the equilibrium expression for the dissociation of PCl5. The dissociation reaction is: \[ \text{PCl}_5(g) \rightleftharpoons \text{PCl}_3(g) + \text{Cl}_2(g) \] The equilibrium constant \( K_p \) is given by: \[ K_p = \frac{P_{\text{PCl}_3} \cdot P_{\text{Cl}_2}}{P_{\text{PCl}_5}} \] ### Step 2: Relate \( K_p \) to \( K_c \). We know that: \[ K_p = K_c \cdot (RT)^{\Delta n} \] where \( \Delta n \) is the change in moles of gas, \( R \) is the universal gas constant, and \( T \) is the temperature in Kelvin. Here, the number of moles of products (PCl3 + Cl2) is 2, and the number of moles of reactants (PCl5) is 1. Thus: \[ \Delta n = 2 - 1 = 1 \] ### Step 3: Convert temperature to Kelvin. Given temperature \( T = 300^\circ C \): \[ T(K) = 300 + 273 = 573 \, K \] ### Step 4: Substitute known values into the equation. Given \( K_p = 11.8 \) and \( R = 0.0821 \, L \cdot atm/(K \cdot mol) \): \[ K_p = K_c \cdot (0.0821 \cdot 573)^1 \] \[ 11.8 = K_c \cdot (0.0821 \cdot 573) \] Calculating \( 0.0821 \cdot 573 \): \[ 0.0821 \cdot 573 \approx 47.0523 \] Now, substituting back: \[ 11.8 = K_c \cdot 47.0523 \] \[ K_c = \frac{11.8}{47.0523} \approx 0.25 \] ### Step 5: Write the expression for \( K_c \) in terms of concentrations. At equilibrium, we have: - \([PCl_3] = 0.01 \, mol/L\) - \([Cl_2] = 0.01 \, mol/L\) - \([PCl_5] = x \times 10^{-4} \, mol/L\) Thus, the expression for \( K_c \) is: \[ K_c = \frac{[PCl_3] \cdot [Cl_2]}{[PCl_5]} \] Substituting the values: \[ 0.25 = \frac{0.01 \cdot 0.01}{x \times 10^{-4}} \] ### Step 6: Solve for \( x \). Rearranging gives: \[ 0.25 = \frac{0.0001}{x \times 10^{-4}} \] \[ 0.25 = \frac{0.0001}{x \cdot 10^{-4}} \] \[ 0.25 = \frac{0.0001}{x \cdot 0.0001} \] \[ 0.25 = \frac{1}{x} \] \[ x = \frac{1}{0.25} = 4 \] ### Final Answer: The value of \( x \) is \( 4 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction PCl_(5)(g) rightarrow PCl_(3)(g) + Cl_(2)(g)

For the reaction : PCl_(5) (g) rarrPCl_(3) (g) +Cl_(2)(g) :

For the reaction : PCl_(5) (g) rarrPCl_(3) (g) +Cl_(2)(g) :

For PCl_(5)(g)hArrPCl_(3)(g)+Cl_(2)(g), write the expression of K_(c)

PCl_(5) overset(Delta)to PCl_(3)+Cl_(2)

PCl_(5) overset(Delta)to PCl_(3)+Cl_(2)

PCl_(5) on heating dissociates to PCl _(3) and Cl _(2) because :

(K_p/K_c) for the given equilibrium is [PCl_5 (g) hArrPCl_3(g) + Cl_2 (g)]

Unit of equilibrium constant K_p for the reaction PCl_5(g) hArr PCl_3(g)+ Cl_2(g) is

PCl_(5) is 10% dissociated at 1 atm. What is % dissociation at 4 atm . PCl_(5)(g)hArr PCl_(3)(g)+Cl_(2)(g)