Home
Class 12
CHEMISTRY
Melting & boiling point of NaCl respecti...

Melting & boiling point of NaCl respectively are 1080 K & 1600K. `Delta S` for stage -I & II in `NaCl_((s)) underset(Delta H_("fus") = 30kJ)overset(I)rarr NaCl_((l)) underset(Delta H_("vap") = 160kJ)overset(II)rarr` are

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the entropy changes (ΔS) for two stages of the phase transitions of sodium chloride (NaCl): from solid to liquid (melting) and from liquid to gas (boiling). ### Step-by-Step Solution 1. **Identify Given Data**: - Melting point (T1) of NaCl = 1080 K - Boiling point (T2) of NaCl = 1600 K - Enthalpy of fusion (ΔH_fus) = 30 kJ - Enthalpy of vaporization (ΔH_vap) = 160 kJ 2. **Understand the Relationship**: The change in entropy (ΔS) for a phase transition can be calculated using the formula: \[ \Delta S = \frac{\Delta H}{T} \] where ΔH is the enthalpy change and T is the temperature at which the transition occurs. 3. **Calculate ΔS for Stage I (Melting)**: For the melting of NaCl (solid to liquid): - ΔH_fus = 30 kJ (this is the energy absorbed during melting) - Use the formula: \[ \Delta S_1 = \frac{\Delta H_{fus}}{T_1} = \frac{30 \text{ kJ}}{1080 \text{ K}} \] - Convert kJ to J for consistency in units (1 kJ = 1000 J): \[ \Delta S_1 = \frac{30000 \text{ J}}{1080 \text{ K}} \approx 27.78 \text{ J/K} \] 4. **Calculate ΔS for Stage II (Boiling)**: For the boiling of NaCl (liquid to gas): - ΔH_vap = 160 kJ (this is the energy absorbed during boiling) - Use the formula: \[ \Delta S_2 = \frac{\Delta H_{vap}}{T_2} = \frac{160 \text{ kJ}}{1600 \text{ K}} \] - Again, convert kJ to J: \[ \Delta S_2 = \frac{160000 \text{ J}}{1600 \text{ K}} = 100 \text{ J/K} \] 5. **Final Results**: - ΔS for melting (Stage I): \[ \Delta S_1 \approx 27.78 \text{ J/K} \] - ΔS for boiling (Stage II): \[ \Delta S_2 = 100 \text{ J/K} \] ### Summary of Results: - ΔS for Stage I (melting): **27.78 J/K** - ΔS for Stage II (boiling): **100 J/K**
Promotional Banner

Similar Questions

Explore conceptually related problems

Hoverset("dil NaOH")rarr[A]overset(H_(2)O^(+))underset(Delta)rarr[B]

In the following reaction sequence Y is, PhOCOCH_(3) underset(Delta)overset(AlCl_(3))rarr (X) underset(NaOH)overset(I_(2))rarr (Y)

underset((ii) Zn-H_(2)O) overset((i) O_(3))to underset(Delta) overset(bar:OH)to NO. of aldol condensation product.

In the reaction sequence CH_(3)-overset(O)overset(||)(C)-H-underset(.^(Θ)OH)overset(HCN)rarr(A) underset(Delta)overset(H_(2)O //overset(o+)(H))rarr Product is/are :

overset(HNO_(3)//H_(2)SO_(4))(rarr) A underset(433 K)overset("NaOH")(rarr)B, B is

Complete the following (a) CH_(3)-CHO underset(Delta)overset(SeO_(2))rarr , (b) H_(3)C-CH_(2)-overset(O)overset(||)(C)-CH_(3) underset(Delta)overset(SeO_(2))rarr , (c)

Mg(s)+C(s) underset("high" T)overset(Delta)rarr X overset(H_(2)O)rarr Mg(OH)_(2)+Y X and Y are respectively:

overset("DIBAL-H")underset(Delta)rarr"Product" , Product is :

underset((A))(MeCH)=O+underset((B))(H_(2)NOH) overset(HCOONa)underset(Delta)rarr (C )+H_(2)O Product (C ) is: