Home
Class 12
CHEMISTRY
If Delta G(298K) for the reaction 2H(2(g...

If `Delta G_(298K)` for the reaction `2H_(2(g. 1atm)) + O_(2(g. 1atm)) rarr 2H_(2)O_((g.1atm))` is `-240kJ`, what will be `Delta G_(298K)` for the reaction `H_(2)O_((g.0.2 atm)) rarr H_(2(g.4atm)) + (1)/(2) O_(2(g.0.26atm))`

A

245.7 kJ

B

239.3 kJ

C

125.7 kJ

D

`-125.7 kJ`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the Gibbs free energy change (ΔG) for the reaction: \[ \text{H}_2\text{O(g, 0.2 atm)} \rightarrow \text{H}_2(g, 4 \text{ atm}) + \frac{1}{2} \text{O}_2(g, 0.26 \text{ atm}) \] Given that the ΔG at standard conditions (1 atm) for the formation of water is -240 kJ for the reaction: \[ 2 \text{H}_2(g, 1 \text{ atm}) + \text{O}_2(g, 1 \text{ atm}) \rightarrow 2 \text{H}_2\text{O(g, 1 atm)} \] ### Step-by-Step Solution: **Step 1: Calculate ΔG for the formation of 1 mole of water.** - The given ΔG for the formation of 2 moles of water is -240 kJ. - Therefore, for 1 mole of water, ΔG is: \[ \Delta G_{\text{formation}} = \frac{-240 \text{ kJ}}{2} = -120 \text{ kJ} \] **Step 2: Determine ΔG for the decomposition of 1 mole of water.** - The decomposition reaction is the reverse of the formation reaction, so: \[ \Delta G_{\text{decomposition}} = +120 \text{ kJ} \] **Step 3: Use the reaction quotient (Q) to adjust ΔG.** - The reaction quotient \( Q \) for the decomposition reaction is given by: \[ Q = \frac{P_{\text{H}_2} \times (P_{\text{O}_2})^{1/2}}{P_{\text{H}_2\text{O}}} \] - Plugging in the pressures: \[ Q = \frac{(4 \text{ atm}) \times (0.26 \text{ atm})^{1/2}}{0.2 \text{ atm}} = \frac{4 \times 0.51}{0.2} = \frac{2.04}{0.2} = 10.2 \] **Step 4: Calculate the change in Gibbs free energy using the formula.** - The formula for ΔG in terms of Q is: \[ \Delta G = \Delta G^\circ + RT \ln Q \] - Where \( R = 8.314 \text{ J/(mol K)} \) and \( T = 298 \text{ K} \). - Convert ΔG° to Joules: \[ \Delta G^\circ = 120 \text{ kJ} = 120,000 \text{ J} \] - Now calculate \( RT \ln Q \): \[ RT = 8.314 \times 298 = 2477.572 \text{ J} \] \[ \ln Q = \ln(10.2) \approx 2.31 \] \[ RT \ln Q = 2477.572 \times 2.31 \approx 5711.5 \text{ J} \] **Step 5: Combine the values to find ΔG.** - Now substitute back into the ΔG equation: \[ \Delta G = 120,000 \text{ J} + 5711.5 \text{ J} = 125,711.5 \text{ J} \approx 125.7 \text{ kJ} \] ### Final Answer: \[ \Delta G_{298K} \approx 125.7 \text{ kJ} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

In the reaction 2H_(2)(g) + O_(2)(g) rarr 2H_(2)O (l), " "Delta H = - xkJ

The enthalpy change (Delta H) for the reaction N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g) is -92.38 kJ at 298 K . What is Delta U at 298 K ?

The enthalpy change (DeltaH) for the reaction, N_(2(g))+3H_(2(g)) rarr 2NH_(3g) is -92.38kJ at 298K What is DeltaU at 298K ?

For the fuel cell reaction 2H_(2)(g) +O_(2)(g) rarr 2H_(2)O(l), Deta_(f)H_(298)^(@) (H_(2)O,l) =- 285.5 kJ//mol What is Delta_(298)^(@) for the given fuel cell reaction? Given: O_(2)(g) +4H^(+)(aQ) +4e^(-) rarr 2H_(2)O(l) E^(@) = 1.23 V

For the equilibrium H_(2) O (1) hArr H_(2) O (g) at 1 atm 298 K

The value of K_(p) for the reaction 2H_(2) O ( g) + 2Cl_(2)(g) rarr 4HCl ( g) + O_(2)(g) is 0.035 atm at 400^(@)C , when the partial pressure are expressed in atmosphere. Calculate K_(c ) for the reaction, (1)/( 2) O_(2)(g) + 2HCl ( g) rarr Cl_(2)(g) + H_(2) O ( g)

Calculate the equilibrium constant for the reaction, H_(2(g))+CO_(2(g))hArrH_(2)O_((g))+CO_((g)) at 1395 K , if the equilibrium constants at 1395 K for the following are: 2H_(2)O_((g))hArr2H_(2)+O_(2(g)) ( K_(1)=2.1xx10^(-13) ) 2CO_(2(g))hArr2CO_((g))+O_(2(g)) ( K_(2)=1.4xx10^(-12) )

Delta H_(1)^(@) for CO_(2)(g) , CO(g) and H_(2)O(g) are -393.5,-110.5 and -241.8 kJ mol^(-1) respectively. Standard enthalpy change for the reaction CO_(2)(g)+H_(2)(g) rarr CO(g) + H_(2)O(g) is

K_(C) " for " H_(2) (g)+ 1//2 O_(2)(g) rArr H_(2) O (l)at 500 K is 2.4 xx 10^(47), K_(p) of the reaction is .

The internal energy change (DeltaU) for the reaction CH_(4)(g) + 2O_(2)(g) to CO_(2)(g) + 2H_(2)O(l) is -885 kJ mol^(-1) at 298K. What is DeltaH at 398 K?