Home
Class 12
CHEMISTRY
DeltaH in terms of 'x' xx 10^(3) KJ is i...

`DeltaH` in terms of 'x' `xx 10^(3)` KJ is if
`M_((g)) + 2X_((g)) rarr M_((g))^(2+) + 2X_((g))^(-)`
Given : `(I.E)_(1)` of M (g) = 705.7 kJ `mol^(-1), (I.E)_(2) " of" M(g)` = 951 kJ `mol^(-1) and (E.A)_(1)` of X(g) = `-328 kJ mol^(-1)` 'x' is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the enthalpy change (ΔH) for the reaction given the ionization energies (IE) and electron affinity (EA) of the species involved. ### Step-by-Step Solution: 1. **Identify the Reaction**: The reaction given is: \[ M(g) + 2X(g) \rightarrow M^{2+} + 2X^{-} \] 2. **Calculate ΔH for the Formation of M²⁺**: To form \( M^{2+} \) from \( M \), we need to consider the ionization energies: \[ \text{ΔH for } M \rightarrow M^{2+} + 2e^{-} = \text{IE}_1 + \text{IE}_2 \] Given: - \( \text{IE}_1 = 705.7 \, \text{kJ/mol} \) - \( \text{IE}_2 = 951 \, \text{kJ/mol} \) Therefore: \[ \text{ΔH for } M \rightarrow M^{2+} = 705.7 + 951 = 1656.7 \, \text{kJ/mol} \] 3. **Calculate ΔH for the Formation of 2X⁻**: To form \( 2X^{-} \) from \( 2X \), we use the electron affinity: \[ \text{ΔH for } 2X + 2e^{-} \rightarrow 2X^{-} = 2 \times \text{EA}_1 \] Given: - \( \text{EA}_1 = -328 \, \text{kJ/mol} \) Therefore: \[ \text{ΔH for } 2X \rightarrow 2X^{-} = 2 \times (-328) = -656 \, \text{kJ/mol} \] 4. **Combine the Enthalpy Changes**: The overall ΔH for the reaction is: \[ \text{ΔH} = \text{ΔH for } M \rightarrow M^{2+} + \text{ΔH for } 2X \rightarrow 2X^{-} \] Substituting the values: \[ \text{ΔH} = 1656.7 - 656 = 1000.7 \, \text{kJ/mol} \] 5. **Relate ΔH to the Given Expression**: The problem states that ΔH can be expressed as: \[ \Delta H = x \times 10^3 \, \text{kJ} \] We have calculated ΔH to be 1000.7 kJ. Therefore: \[ 1000.7 = x \times 10^3 \] 6. **Solve for x**: Dividing both sides by \( 10^3 \): \[ x = \frac{1000.7}{1000} = 1.0007 \] Rounding to one decimal place, we find: \[ x \approx 1 \] ### Final Answer: Thus, the value of \( x \) is approximately **1**.
Promotional Banner

Similar Questions

Explore conceptually related problems

ArarrB, DeltaH= -10 KJ mol^(-1), E_(a(f))=50 KJ mol^(-1) , then E_(a) of BrarrA will be

Calculate equilibrium constant for the reaction: 2SO_(2)(g) +O_(2)(g) hArr 2SO_(3)(g) at 25^(@)C Given: Delta_(f)G^(Theta) SO_(3)(g) = - 371.1 kJ mol^(-1) , Delta_(f)G^(Theta)SO_(2)(g) =- 300.2 kJ mol^(-1) and R = 8.31 J K^(-1) mol^(-1)

Calculate the standard Gibbs free energy change from the free energies of formation data for the following reaction: C_(6)H_(6)(l) +(15)/(2)O_(2)(g) rarr 6CO_(2)(g) +3H_(2)O(g) Given that Delta_(f)G^(Theta) =[C_(6)H_(6)(l)] = 172.8 kJ mol^(-1) Delta_(f)G^(Theta)[CO_(2)(g)] =- 394.4 kJ mol^(-1) Delta_(f)G^(Theta) [H_(2)O(g)] =- 228.6 kJ mol^(-1)

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) = 206.8 J K^(-1) mol^(-1) .

Calculate the enthalpy change during the reaction : H_(2(g))+Br_(2(g))rarr 2HBr_((g)) Given, e_(H-H)=435kJ mol^(-1),e_(Br-Br)=192kJ mol^(-1) and e_(H-Br)=368kJ mol^(-1).

Based on the values of B.E. given, Delta_(f)H^(@) of N_(2)H_(4) (g) is : Given : N-N = 159 " kJ mol"^(-1)," "H-H=436 " kJ mol"^(-1) N-=N = 941" kJ mol"^(-1), " "N-H=398 " kJ mol"^(-1)

Calculate the percentage of Mg_((g))^(o+) and Mg_((g))^(2+) if 2.4 g of Mg absorbs 120 kJ of energy. The IE_(1) and IE_(2) of Mg_((g)) are 740 and 1450 kJ mol^(-1) .

Calculate the heat of combustion of eithene CH_(2) = CH_(2)(g) + 3O_(2)(g) rarr 2CO_(2)(g) + 2H_(2)O(I) The bond energy data are given below C = C = 619 kJ mol^(-1) C - H = 414 kJ mol^(-1) O = O = 499 kJ mol^(-1) C = O = 724 kJ mol^(-1) O - H = 460 kJ mol^(-1)

Calculate the heat of combustion of eithene CH_(2) = CH_(2)(g) + 3O_(2)(g) rarr 2CO_(2)(g) + 2H_(2)O(I) The bond energy data are given below C = C = 619 kJ mol^(-1) C - H = 414 kJ mol^(-1) O = O = 499 kJ mol^(-1) C = O = 724 kJ mol^(-1) O - H = 460 kJ mol^(-1)