Home
Class 12
CHEMISTRY
{:("List-I"," ""List-II"),(1("In" H(3)PO...

`{:("List-I"," ""List-II"),(1("In" H_(3)PO_(4)"solution"),(C=[H_(3)PO_(4)])),((A)[H^(+)],P.sqrt(K_(1)C)),((B)[H_(2)PO_(4)^(-)],Q.K_(2)),((C)[HPO_(4)^(-2)],R.sqrt(K_(1)K_(2))),((D)[PO_(4)^(-3)],S.(K_(2)K_(3))/(sqrt(K_(1).C))):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to match the items in List-I with the corresponding items in List-II based on the dissociation of phosphoric acid (H₃PO₄) and the relationships between the concentrations of the species involved. ### Step-by-Step Solution: 1. **Understanding the Dissociation of H₃PO₄:** - H₃PO₄ dissociates in water to form H₂PO₄⁻ and H⁺. - The equilibrium constant for this reaction is denoted as K₁. - The concentration of H⁺ ions at equilibrium can be expressed as: \[ [H^+] = \sqrt{K_1 \cdot C} \] - Since one mole of H₃PO₄ produces one mole of H₂PO₄⁻ and one mole of H⁺, we have: \[ [H_2PO_4^-] = \sqrt{K_1 \cdot C} \] - Thus, we can match: - **(A)** \([H^+]\) with **(P)** \(\sqrt{K_1 C}\) - **(B)** \([H_2PO_4^-]\) with **(P)** \(\sqrt{K_1 C}\) 2. **Dissociation of H₂PO₄⁻:** - H₂PO₄⁻ further dissociates to form H⁺ and HPO₄²⁻. - The equilibrium constant for this reaction is denoted as K₂. - The concentration of HPO₄²⁻ can be expressed as: \[ [HPO_4^{2-}] = K_2 \cdot [H^+] \] - Therefore, we can conclude: - **(C)** \([HPO_4^{2-}]\) with **(Q)** \(K_2\) 3. **Dissociation of HPO₄²⁻:** - HPO₄²⁻ dissociates to form H⁺ and PO₄³⁻. - The equilibrium constant for this reaction is denoted as K₃. - The concentration of PO₄³⁻ can be expressed as: \[ [PO_4^{3-}] = \frac{K_3 \cdot [H^+]}{[HPO_4^{2-}]} \] - Substituting the expression for \([H^+]\) and \([HPO_4^{2-}]\): \[ [PO_4^{3-}] = \frac{K_3 \cdot \sqrt{K_1 C}}{K_2} \] - Therefore, we can conclude: - **(D)** \([PO_4^{3-}]\) with **(S)** \(\frac{K_2 K_3}{\sqrt{K_1 C}}\) ### Final Matching: - A matches with P: \([H^+] = \sqrt{K_1 C}\) - B matches with P: \([H_2PO_4^-] = \sqrt{K_1 C}\) - C matches with Q: \([HPO_4^{2-}] = K_2\) - D matches with S: \([PO_4^{3-}] = \frac{K_2 K_3}{\sqrt{K_1 C}}\) ### Summary of Matches: - A → P - B → P - C → Q - D → S
Promotional Banner

Similar Questions

Explore conceptually related problems

For H_(3)PO_(4) , H_(3)PO_(4) rarr H_(2)PO_(4)^(-)+H^(+)(K_(1)), H_(2)PO_(4)^- rarr HPO_(4)^(-)+H^(+) (K_2), HPO_(4)^(2-) rarr PO_(4)^(3-) + H^(+) (K_(3)) then

H_(3)PO_(2)+CuSO_(4) to Cu darr+H_(3)PO_(4)+HNO_(3)

{:("List-I"," ""List-II"),(""," ""In the aqueous medium the ion can be"),((A)HPO_(4)^(-2),P."Arrhenius acid"),((B)CO_(3)^(-2),Q."Bronstead base"),((C)H_(2)PO_(3)^(-1),R."Amphoteric"),((D) H_(2)PO_(2)^(-1),S."Bronstead acid"):}

For, H_(3)PO_(4)+H_(2)OhArrH_(3)O^(+)+H_(2)PO_(4)^(-), K_(a_(1)) H_(2)PO_(4)+H_(2)OhArrH_(3)O^(+)+HPO_(4)^(2-), K_(a_(2)) HPO_(4)^(2-)+H_(2)OhArrH_(3)O^(+)+PO_(4)^(3-), K_(a_(3)) The correct order of K_(a) values is:

H_(3)PO_(2)+AgNO_(2) to Ag darr+H_(3)PO_(4)+NO

H_(3)PO_(2)+AgNO_(2) to Ag darr+H_(3)PO_(4)+NO

The oxo-acids of P_(2)O_(5) is H_(3)PO_(4)

H_(3)PO_(4)hArr H^(o+) +H_(2)PO_(4)^(Theta), K_(a_(1)) : H_(2)PO_(4)^(Theta) hArr H^(o+) +HPO_(4)^(2-),' K_(a_(2)) : HPO_(4)^(2-) hArr H^(o+) + PO_(4)^(3-), K_(a_(3)): Mark out the incorrect statements:

H_(4)underline(P_(2))O_(6)+H_(2)O to H_(3)PO_(3)+H_(3)PO_(4)

H_(4)underline(P_(2))O_(6)+H_(2)O to H_(3)PO_(3)+H_(3)PO_(4)