Home
Class 12
PHYSICS
Arrange the vectors subtractions so that...

Arrange the vectors subtractions so that their magnitudes are in decreasing order. If the two vectors `vecA` and `vecB` are acting at an angle `(|vecA| gt |vecB|)`
a) 60° b) 90° c) 180° d) 120°

A

d,c,b,a

B

a,b,d,c

C

c,d,b,a

D

c,d,a,b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of arranging the magnitudes of vector subtractions in decreasing order based on the angles between vectors \(\vec{A}\) and \(\vec{B}\), we will use the formula for the magnitude of the resultant vector when two vectors are subtracted. The formula is given by: \[ |\vec{S}| = |\vec{A} - \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - 2 |\vec{A}| |\vec{B}| \cos \theta} \] where \(\theta\) is the angle between the two vectors. ### Step 1: Calculate the Magnitude for Each Angle 1. **For \(\theta = 60^\circ\)**: \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - 2 |\vec{A}| |\vec{B}| \cos(60^\circ)} \] Since \(\cos(60^\circ) = \frac{1}{2}\): \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - |\vec{A}| |\vec{B}|} \] 2. **For \(\theta = 90^\circ\)**: \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - 2 |\vec{A}| |\vec{B}| \cos(90^\circ)} \] Since \(\cos(90^\circ) = 0\): \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2} \] 3. **For \(\theta = 120^\circ\)**: \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - 2 |\vec{A}| |\vec{B}| \cos(120^\circ)} \] Since \(\cos(120^\circ) = -\frac{1}{2}\): \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + |\vec{A}| |\vec{B}|} \] 4. **For \(\theta = 180^\circ\)**: \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - 2 |\vec{A}| |\vec{B}| \cos(180^\circ)} \] Since \(\cos(180^\circ) = -1\): \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}|} \] ### Step 2: Compare the Magnitudes Now we will summarize the results for each angle: - **For \(60^\circ\)**: \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - |\vec{A}| |\vec{B}|} \] - **For \(90^\circ\)**: \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2} \] - **For \(120^\circ\)**: \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + |\vec{A}| |\vec{B}|} \] - **For \(180^\circ\)**: \[ |\vec{S}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}|} \] ### Step 3: Order the Magnitudes To arrange in decreasing order, we observe the following: - The magnitude for \(180^\circ\) will be the largest because it adds the most positive terms. - The magnitude for \(120^\circ\) is next, as it also adds a positive term. - The magnitude for \(90^\circ\) is next, as it has no subtraction. - The magnitude for \(60^\circ\) is the smallest due to the subtraction of the term. Thus, the order of magnitudes from greatest to least is: 1. \(180^\circ\) 2. \(120^\circ\) 3. \(90^\circ\) 4. \(60^\circ\) ### Final Answer The arrangement of the vectors in decreasing order of their magnitudes is: **c) 180°, d) 120°, b) 90°, a) 60°**
Promotional Banner

Similar Questions

Explore conceptually related problems

The magnitude of the vectors product of two vectors |vecA| and |vecB| may be

The magnitude of the vectors product of two vectors vecA and vecB may be

The magnitude of the vector product of two vectors vecA and vecB may not be:

The angle between the two vectors veca + vecb and veca-vecb is

If the angle between two vectors vecA and vecB " is " 90^(@) then

For any two vectors veca and vecb prove that |veca.vecb|<=|veca||vecb|

For any two vectors veca and vecb prove that |veca+vecb|lt+|veca|+|vecb|

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :