Home
Class 12
PHYSICS
The direction cosines of a vector a are ...

The direction cosines of a vector a are `cos alpha = 4/(5sqrt(2)), cos beta =1/sqrt(2)` and `cos gamma =3/(5sqrt(2))` then the vector `vecA` is

A

`4hati + hatj + 3hatk`

B

`4hati +5hatj + 3hatk`

C

`4hati - 5hatj - 3hatk`

D

`hati + hatj - hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{A}\) given the direction cosines, we can follow these steps: ### Step 1: Understand the Direction Cosines The direction cosines of a vector \(\vec{A}\) are given as: - \(\cos \alpha = \frac{4}{5\sqrt{2}}\) - \(\cos \beta = \frac{1}{\sqrt{2}}\) - \(\cos \gamma = \frac{3}{5\sqrt{2}}\) ### Step 2: Relate Direction Cosines to Vector Components The direction cosines are defined as: \[ \cos \alpha = \frac{A}{\|\vec{A}\|}, \quad \cos \beta = \frac{B}{\|\vec{A}\|}, \quad \cos \gamma = \frac{C}{\|\vec{A}\|} \] where \(A\), \(B\), and \(C\) are the components of the vector \(\vec{A} = A\hat{i} + B\hat{j} + C\hat{k}\) and \(\|\vec{A}\|\) is the magnitude of the vector. ### Step 3: Set Up the Equations From the definitions, we can express the components \(A\), \(B\), and \(C\) in terms of the magnitude \(\|\vec{A}\|\): \[ A = \cos \alpha \cdot \|\vec{A}\|, \quad B = \cos \beta \cdot \|\vec{A}\|, \quad C = \cos \gamma \cdot \|\vec{A}\| \] ### Step 4: Find the Magnitude To find the magnitude \(\|\vec{A}\|\), we can use the relationship: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \] Calculating each term: \[ \cos^2 \alpha = \left(\frac{4}{5\sqrt{2}}\right)^2 = \frac{16}{50} = \frac{8}{25} \] \[ \cos^2 \beta = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} = \frac{25}{50} \] \[ \cos^2 \gamma = \left(\frac{3}{5\sqrt{2}}\right)^2 = \frac{9}{50} \] Now, summing these: \[ \frac{8}{25} + \frac{25}{50} + \frac{9}{50} = \frac{16}{50} + \frac{25}{50} + \frac{9}{50} = \frac{50}{50} = 1 \] This confirms that the direction cosines are valid. ### Step 5: Calculate the Components Assuming \(\|\vec{A}\| = k\), we can express the components: \[ A = \frac{4}{5\sqrt{2}} \cdot k, \quad B = \frac{1}{\sqrt{2}} \cdot k, \quad C = \frac{3}{5\sqrt{2}} \cdot k \] ### Step 6: Choose a Suitable Magnitude To simplify calculations, we can choose \(k = 5\sqrt{2}\): \[ A = 4, \quad B = 5, \quad C = 3 \] ### Step 7: Write the Vector Thus, the vector \(\vec{A}\) can be expressed as: \[ \vec{A} = 4\hat{i} + 5\hat{j} + 3\hat{k} \] ### Conclusion The vector \(\vec{A}\) is \(4\hat{i} + 5\hat{j} + 3\hat{k}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The direction cosines of a vector hati+hatj+sqrt(2) hatk are:-

If alpha, beta, gamma in [0,2pi] , then the sum of all possible values of alpha, beta, gamma if sin alpha=-1/sqrt(2), cos beta=-1/sqrt(2), tan gamma =-sqrt(3) , is

If the two directional cosines of a vectors are 1/sqrt(2) and 1/sqrt(3) then the value of third directional cosine is

Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are 1/(sqrt(3)),1/(sqrt(3)),1/(sqrt(3)) .

If cos alpha=4/5 and cos beta =5/13, prove that cos (alpha-beta)/2=28/65.

If the magnitude of the projection vector of the vector alphahati+betahatj on sqrt(3) hati+hatj is sqrt(3) and if alpha=2+sqrt(3)beta then possible value (s) of |alpha| is /are

If sin alpha=4/5 and cos beta =5/13, prove that cos ((alpha-beta)/2)=8/sqrt 65.

If the direction angles of a line are alpha, beta and gamma respectively, then cos 2 alpha + cos 2 beta + cos 2gamma is equal to

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

Statement 1: If cosalpha,cosbeta,a n dcosgamma are the direction cosines of any line segment, then cos^2alpha+cos^2beta+cos^2gamma=1. Statement 2: If cosalpha,cosbeta,a n dcosgamma are the direction cosines of any line segment, then cos2alpha+cos2beta+cos2gamma=1.