Home
Class 12
PHYSICS
If vecu = 2hati - 2hatj + 3hatk and the...

If `vecu = 2hati - 2hatj + 3hatk` and the final velocity is `vecv = 2hati - 4hatj + 5hatk` and it is covered in a time of 10 sec, find the acceleration vector.

A

`(3hati - 2hatj + 2hatk)/10`

B

`(-3hati + hatj + 2hatk)/10`

C

`(-3hati - 2hatj + 2hatk)/10`

D

`(-hati + hatk)/5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the acceleration vector given the initial and final velocity vectors, we can follow these steps: ### Step 1: Identify the given vectors We are given: - Initial velocity vector, \( \vec{u} = 2\hat{i} - 2\hat{j} + 3\hat{k} \) - Final velocity vector, \( \vec{v} = 2\hat{i} - 4\hat{j} + 5\hat{k} \) - Time interval, \( \Delta t = 10 \, \text{s} \) ### Step 2: Calculate the change in velocity The change in velocity \( \Delta \vec{v} \) is given by: \[ \Delta \vec{v} = \vec{v} - \vec{u} \] Substituting the values: \[ \Delta \vec{v} = (2\hat{i} - 4\hat{j} + 5\hat{k}) - (2\hat{i} - 2\hat{j} + 3\hat{k}) \] ### Step 3: Perform the subtraction Now, we subtract the vectors component-wise: - For the \( \hat{i} \) component: \( 2 - 2 = 0 \) - For the \( \hat{j} \) component: \( -4 - (-2) = -4 + 2 = -2 \) - For the \( \hat{k} \) component: \( 5 - 3 = 2 \) Thus, we have: \[ \Delta \vec{v} = 0\hat{i} - 2\hat{j} + 2\hat{k} \] ### Step 4: Calculate the acceleration vector The acceleration \( \vec{a} \) is given by the formula: \[ \vec{a} = \frac{\Delta \vec{v}}{\Delta t} \] Substituting the values: \[ \vec{a} = \frac{0\hat{i} - 2\hat{j} + 2\hat{k}}{10} \] ### Step 5: Simplify the acceleration vector Now, we simplify the vector: \[ \vec{a} = 0\hat{i} - \frac{2}{10}\hat{j} + \frac{2}{10}\hat{k} = 0\hat{i} - \frac{1}{5}\hat{j} + \frac{1}{5}\hat{k} \] Thus, the acceleration vector can be expressed as: \[ \vec{a} = -\frac{1}{5}\hat{j} + \frac{1}{5}\hat{k} \] ### Final Answer The acceleration vector is: \[ \vec{a} = -\hat{j} + \hat{k} \, \text{(divided by 5)} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The velocity (in m/s) of an object changes from vecv_(1) = 10 hati + 4hatj + 2hatk " to " vecv_(2) = 4hati + 2hatj + 3hatk in 5 second. Find the magnitude of average acceleration.

The velocity (in m/s) of an object changes from vecv_(1) = 10 hati + 4hatj + 2hatk to vecv_(2) = 4hati + 2hatj + 3hatk in 5 second. Find the magnitude of average acceleration.

Statement1: A component of vector vecb = 4hati + 2hatj + 3hatk in the direction perpendicular to the direction of vector veca = hati + hatj +hatk is hati - hatj Statement 2: A component of vector in the direction of veca = hati + hatj + hatk is 2hati + 2hatj + 2hatk

If vecomega=2hati-3hatj+4hatk and vecr=2hati-3hatj+2hatk then the linear velocity is

Let vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecn .hatn =0 , " then " |vecw.hatn| is equal to

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

A vector coplanar with vectors hati + hatj and hat j + hatk and parallel to the vector 2hati -2 hatj - 4 hatk , is

Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk , vecw = hati + 3hatj + 3hatk and (vecu.vecR - 15) hati + (vecc. vecR - 30) hatj + (vecw . vec- 20) veck = vec0 . Then find the greatest integer less than or equal to |vecR| .

Let vecu= hati + hatj , vecv = hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecv .hatn =0 , " then " |vecw.hatn| is equal to

The vector component of vector vecA =3hati +4hatj +5hatk along vector vecB =hati +hatj +hatk is :