Home
Class 12
PHYSICS
Given two vectors A = i-2j-3k and B = 4i...

Given two vectors A = i-2j-3k and B = 4i - 2j + 6k. The angle made by (A + B) with the X-axis is

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle made by the vector \( \mathbf{A} + \mathbf{B} \) with the X-axis, we can follow these steps: ### Step 1: Calculate \( \mathbf{A} + \mathbf{B} \) Given: \[ \mathbf{A} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \] \[ \mathbf{B} = 4\mathbf{i} - 2\mathbf{j} + 6\mathbf{k} \] Now, add the two vectors: \[ \mathbf{A} + \mathbf{B} = (\mathbf{i} + 4\mathbf{i}) + (-2\mathbf{j} - 2\mathbf{j}) + (-3\mathbf{k} + 6\mathbf{k}) \] \[ = (1 + 4)\mathbf{i} + (-2 - 2)\mathbf{j} + (-3 + 6)\mathbf{k} \] \[ = 5\mathbf{i} - 4\mathbf{j} + 3\mathbf{k} \] ### Step 2: Find the angle with the X-axis The angle \( \theta \) that the vector \( \mathbf{R} = \mathbf{A} + \mathbf{B} \) makes with the X-axis can be found using the dot product formula. The dot product of two vectors \( \mathbf{X} \) (along the X-axis) and \( \mathbf{R} \) is given by: \[ \mathbf{X} \cdot \mathbf{R} = |\mathbf{X}| |\mathbf{R}| \cos \theta \] Where: \[ \mathbf{X} = \mathbf{i} \quad \text{(which has components (1, 0, 0))} \] \[ \mathbf{R} = 5\mathbf{i} - 4\mathbf{j} + 3\mathbf{k} \] ### Step 3: Calculate the magnitudes 1. **Magnitude of \( \mathbf{R} \)**: \[ |\mathbf{R}| = \sqrt{(5)^2 + (-4)^2 + (3)^2} = \sqrt{25 + 16 + 9} = \sqrt{50} = 5\sqrt{2} \] 2. **Magnitude of \( \mathbf{X} \)**: \[ |\mathbf{X}| = 1 \] ### Step 4: Calculate the dot product Now, calculate the dot product \( \mathbf{X} \cdot \mathbf{R} \): \[ \mathbf{X} \cdot \mathbf{R} = (1)(5) + (0)(-4) + (0)(3) = 5 \] ### Step 5: Set up the equation Using the dot product formula: \[ 5 = 1 \cdot (5\sqrt{2}) \cos \theta \] \[ 5 = 5\sqrt{2} \cos \theta \] ### Step 6: Solve for \( \cos \theta \) Rearranging gives: \[ \cos \theta = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Step 7: Find \( \theta \) Now, find \( \theta \): \[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^\circ \] ### Final Answer The angle made by \( \mathbf{A} + \mathbf{B} \) with the X-axis is \( 45^\circ \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :

Given two vectors A = -4hat(i) + 4hat(j) + 2hat(k) and B = 2hat(i) - hat(j) - hat(k) . The angle made by (A+B) with hat(i) + 2hat(j) - 4hat(k) is :

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j) + 6hat(k) .Calculate the angle made by (vec(A) +vec(B)) with the x - axis ?

A=4i+4j-4k and B=3i+j +4k , then angle between vectors A and B is

If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) and B = hat(i) - 2hat(j) - 3hat(k) the angle which the vec(A) vec(B) makes with x-axis is :

The unit vector orthogonal to vector -hat i+ hat j+2 hat k and making equal angles with the x and y-axis a. +-1/3(2 hat i+2 hat j- hat k) b. +-1/3( hat i+ hat j- hat k) c. +-1/3(2 hat i-2 hat j- hat k) d. none of these

Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k

For given vector, vec a = 2 hat i j +2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

Find the angle between two vectors A= 2 hat i + hat j - hat k and B=hat i - hat k .