Home
Class 12
MATHS
Let X be a random variable such that f(X...

Let X be a random variable such that `f(X=-2)=f(X=-1)=f(X=2)=f(X=1)=(1)/(6)` and `f(X=0)=(1)/(3)`. Find the mean and variance of X.

Text Solution

AI Generated Solution

The correct Answer is:
To find the mean and variance of the random variable \( X \) with the given probability mass function, we can follow these steps: ### Step 1: Identify the values and probabilities We have the following values of \( X \) and their corresponding probabilities: - \( f(X = -2) = \frac{1}{6} \) - \( f(X = -1) = \frac{1}{6} \) - \( f(X = 0) = \frac{1}{3} \) - \( f(X = 1) = \frac{1}{6} \) - \( f(X = 2) = \frac{1}{6} \) ### Step 2: Calculate the mean The mean \( \mu \) of a discrete random variable is calculated using the formula: \[ \mu = E(X) = \sum (x \cdot f(x)) \] Substituting the values: \[ \mu = (-2) \cdot \frac{1}{6} + (-1) \cdot \frac{1}{6} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} \] Calculating each term: \[ \mu = -\frac{2}{6} - \frac{1}{6} + 0 + \frac{1}{6} + \frac{2}{6} \] Combining the terms: \[ \mu = -\frac{2}{6} - \frac{1}{6} + \frac{1}{6} + \frac{2}{6} = -\frac{2}{6} = -\frac{1}{3} \] ### Step 3: Calculate the variance The variance \( \sigma^2 \) is calculated using the formula: \[ \sigma^2 = E(X^2) - (E(X))^2 \] First, we need to calculate \( E(X^2) \): \[ E(X^2) = \sum (x^2 \cdot f(x)) \] Substituting the values: \[ E(X^2) = (-2)^2 \cdot \frac{1}{6} + (-1)^2 \cdot \frac{1}{6} + 0^2 \cdot \frac{1}{3} + 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} \] Calculating each term: \[ E(X^2) = 4 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 + 1 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} \] Combining the terms: \[ E(X^2) = \frac{4}{6} + \frac{1}{6} + 0 + \frac{1}{6} + \frac{4}{6} = \frac{10}{6} = \frac{5}{3} \] Now, we can find the variance: \[ \sigma^2 = E(X^2) - (E(X))^2 = \frac{5}{3} - \left(-\frac{1}{3}\right)^2 \] Calculating \( \left(-\frac{1}{3}\right)^2 \): \[ \left(-\frac{1}{3}\right)^2 = \frac{1}{9} \] Now substituting back into the variance formula: \[ \sigma^2 = \frac{5}{3} - \frac{1}{9} \] To subtract these fractions, we need a common denominator. The least common multiple of 3 and 9 is 9: \[ \sigma^2 = \frac{15}{9} - \frac{1}{9} = \frac{14}{9} \] ### Final Results Thus, the mean \( \mu \) and variance \( \sigma^2 \) of the random variable \( X \) are: - Mean \( \mu = 0 \) - Variance \( \sigma^2 = \frac{14}{9} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a function such that f(x).f(y)=f(x+y) , f(0)=1 , f(1)=4 . If 2g(x)=f(x).(1-g(x))

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

Let f(x) be a cubic polynomical such that f'(x)=0 at x=1 and x=3, f(1)=6,f(3)=2 , then value of f(-1) is

Let f : W-> W be a given function satisfying f(x) = f(x-1)+f(x-2) for x<=2 .If f(0)=0 and f(1)=1 , ther find the value of f(2) + f(3) + f(4) + f(5) + f(6) .

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

Let f:RrarrR be such that f(a)=1, f(a)=2 . Then lim_(x to 0)((f^(2)(a+x))/(f(a)))^(1//x) is