Home
Class 12
MATHS
If X~B(n,p),mu=20,sigma^(2)=10, then fin...

If `X~B(n,p),mu=20,sigma^(2)=10`, then find n and p.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( n \) and \( p \) given that \( X \) follows a binomial distribution \( B(n, p) \) with mean \( \mu = 20 \) and variance \( \sigma^2 = 10 \). ### Step-by-step Solution: 1. **Understanding the Mean and Variance of a Binomial Distribution**: - The mean \( \mu \) of a binomial distribution is given by: \[ \mu = n \cdot p \] - The variance \( \sigma^2 \) of a binomial distribution is given by: \[ \sigma^2 = n \cdot p \cdot (1 - p) \] 2. **Setting Up the Equations**: - From the mean, we have: \[ n \cdot p = 20 \quad \text{(Equation 1)} \] - From the variance, we have: \[ n \cdot p \cdot (1 - p) = 10 \quad \text{(Equation 2)} \] 3. **Substituting Equation 1 into Equation 2**: - From Equation 1, we know \( n \cdot p = 20 \). We can substitute this into Equation 2: \[ 20 \cdot (1 - p) = 10 \] 4. **Solving for \( p \)**: - Rearranging the equation gives: \[ 20 - 20p = 10 \] - Simplifying this results in: \[ 20p = 20 - 10 \] \[ 20p = 10 \] \[ p = \frac{10}{20} = \frac{1}{2} \] 5. **Finding \( n \)**: - Now that we have \( p = \frac{1}{2} \), we can substitute back into Equation 1 to find \( n \): \[ n \cdot \frac{1}{2} = 20 \] - Multiplying both sides by 2 gives: \[ n = 40 \] 6. **Final Values**: - Thus, we have: \[ n = 40, \quad p = \frac{1}{2} \] ### Summary: The values are: - \( n = 40 \) - \( p = \frac{1}{2} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If P(n ,4)=20xxP(n ,2), then find the value of n

(a) If n(A) = 6 and n(AxxB)=42 then find n(B) (b) If some of the elements of A xx B are (x,p),(p,q), (r,s) . Then find the minimum value of n(A xx B) .

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

If P(n ,4)=20 x P(n ,2),find n.

If P(n ,4)=20xxP(n ,2), find n.

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

If P(notA) =0. 7 ,P(B)=0.7 a n dP(B//A)=0. 5 , then find P(A//B)a n dP(AuuB)dot

If A and B are two events such that P(A)=1/4, P(B)=1/2a n d\ P(AnnB)=1/8 , find P (not A and not B).

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

If .^(n)P_(5)=20 .^(n)P_(3) , find the value of n.