Home
Class 12
MATHS
For the binomial distribution X with par...

For the binomial distribution X with parameters `n=12,p=(1)/(2)`, compute
i) `P(10leXle12)" "`ii) `P(3 lt X lt 6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will compute the probabilities for the binomial distribution \( X \) with parameters \( n = 12 \) and \( p = \frac{1}{2} \). ### i) Compute \( P(10 \leq X \leq 12) \) 1. **Identify the Probability Formula**: The probability mass function for a binomial distribution is given by: \[ P(X = r) = \binom{n}{r} p^r (1-p)^{n-r} \] Here, \( n = 12 \) and \( p = \frac{1}{2} \), so \( 1 - p = \frac{1}{2} \). 2. **Calculate \( P(X = 10) \), \( P(X = 11) \), and \( P(X = 12) \)**: \[ P(X = 10) = \binom{12}{10} \left(\frac{1}{2}\right)^{10} \left(\frac{1}{2}\right)^{2} = \binom{12}{10} \left(\frac{1}{2}\right)^{12} \] \[ P(X = 11) = \binom{12}{11} \left(\frac{1}{2}\right)^{11} \left(\frac{1}{2}\right)^{1} = \binom{12}{11} \left(\frac{1}{2}\right)^{12} \] \[ P(X = 12) = \binom{12}{12} \left(\frac{1}{2}\right)^{12} = \binom{12}{12} \left(\frac{1}{2}\right)^{12} \] 3. **Calculate the Binomial Coefficients**: \[ \binom{12}{10} = \binom{12}{2} = \frac{12 \times 11}{2 \times 1} = 66 \] \[ \binom{12}{11} = 12 \] \[ \binom{12}{12} = 1 \] 4. **Combine the Probabilities**: \[ P(10 \leq X \leq 12) = P(X = 10) + P(X = 11) + P(X = 12) \] \[ P(10 \leq X \leq 12) = \left(66 + 12 + 1\right) \left(\frac{1}{2}\right)^{12} = 79 \left(\frac{1}{2}\right)^{12} \] \[ P(10 \leq X \leq 12) = \frac{79}{4096} \] ### ii) Compute \( P(3 < X < 6) \) 1. **Identify the Relevant Probabilities**: We need to calculate \( P(X = 4) \) and \( P(X = 5) \): \[ P(X = 4) = \binom{12}{4} \left(\frac{1}{2}\right)^{12} \] \[ P(X = 5) = \binom{12}{5} \left(\frac{1}{2}\right)^{12} \] 2. **Calculate the Binomial Coefficients**: \[ \binom{12}{4} = \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} = 495 \] \[ \binom{12}{5} = \frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1} = 792 \] 3. **Combine the Probabilities**: \[ P(3 < X < 6) = P(X = 4) + P(X = 5) \] \[ P(3 < X < 6) = \left(495 + 792\right) \left(\frac{1}{2}\right)^{12} = 1287 \left(\frac{1}{2}\right)^{12} \] \[ P(3 < X < 6) = \frac{1287}{4096} \] ### Final Answers: - \( P(10 \leq X \leq 12) = \frac{79}{4096} \) - \( P(3 < X < 6) = \frac{1287}{4096} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If a binomial distribution have parameters 9, 1//3 then P(X=4)=

In a binomial distribution, the parameter n=6 . If 9P(X=4)=P(X=2) , then p=

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows the binomial distribution with parameters n=6 and p and 9p(X=4)=P(X=2), then p is

If X follows a binomial distribution with parameters n=6 and p. If 4P(X=4))=P(X=2) , then P=

If X follows a binomial distribution with parameters n=100 and p = 1/3 , then P(X = r) is maximum when

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

Assertion (A) : X is a binomial distribution with parameters n = 100 and p . If P (x = 50) = P ( x = 49) then p = (1)/(2) Reason (R) : For the binomial distribution (q + p)^n , P (x = k) = ""^(n) c_(k) .q^(n-k) .p^(k)

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0