Home
Class 12
MATHS
The range of a random variable X is {0, ...

The range of a random variable X is {0, 1, 2}. Given that `P(X=0)=3c^(3),P(X=1)=4c-10c^(2),P(X=2)=5c-1` where c is constant.
Find (i) the value of c (ii) `P(X lt 1)`
(iii) `P(1lt X le2)` (iv) `P(0lt X le3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions provided in the video transcript. ### Step 1: Find the value of \( c \) We know that the sum of the probabilities must equal 1: \[ P(X=0) + P(X=1) + P(X=2) = 1 \] Substituting the given probabilities: \[ 3c^3 + (4c - 10c^2) + (5c - 1) = 1 \] Combining like terms: \[ 3c^3 - 10c^2 + 9c - 2 = 0 \] Now we need to find the roots of this cubic equation. We can test possible rational roots. Testing \( c = 1 \): \[ 3(1)^3 - 10(1)^2 + 9(1) - 2 = 3 - 10 + 9 - 2 = 0 \] Thus, \( c = 1 \) is a root. We can factor the cubic polynomial using \( c - 1 \). Using synthetic division or polynomial long division, we divide \( 3c^3 - 10c^2 + 9c - 2 \) by \( c - 1 \): The result of the division is: \[ 3c^2 - 7c + 2 \] Now we can find the roots of the quadratic equation \( 3c^2 - 7c + 2 = 0 \) using the quadratic formula: \[ c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting \( a = 3, b = -7, c = 2 \): \[ c = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 3 \cdot 2}}{2 \cdot 3} = \frac{7 \pm \sqrt{49 - 24}}{6} = \frac{7 \pm \sqrt{25}}{6} = \frac{7 \pm 5}{6} \] Calculating the two possible values: 1. \( c = \frac{12}{6} = 2 \) 2. \( c = \frac{2}{6} = \frac{1}{3} \) Now we need to check which values of \( c \) give valid probabilities. - For \( c = 1 \): \( P(X=1) = 4(1) - 10(1^2) = 4 - 10 = -6 \) (not valid) - For \( c = 2 \): \( P(X=1) = 4(2) - 10(2^2) = 8 - 40 = -32 \) (not valid) - For \( c = \frac{1}{3} \): \[ P(X=1) = 4\left(\frac{1}{3}\right) - 10\left(\frac{1}{3}\right)^2 = \frac{4}{3} - \frac{10}{9} = \frac{12}{9} - \frac{10}{9} = \frac{2}{9} \quad (\text{valid}) \] Thus, the only valid value for \( c \) is: \[ \boxed{\frac{1}{3}} \] ### Step 2: Find \( P(X < 1) \) Since \( P(X < 1) = P(X = 0) \): \[ P(X=0) = 3c^3 = 3\left(\frac{1}{3}\right)^3 = 3 \cdot \frac{1}{27} = \frac{1}{9} \] Thus, \[ \boxed{\frac{1}{9}} \] ### Step 3: Find \( P(1 < X \leq 2) \) This is equal to \( P(X = 2) \): \[ P(X=2) = 5c - 1 = 5\left(\frac{1}{3}\right) - 1 = \frac{5}{3} - 1 = \frac{5}{3} - \frac{3}{3} = \frac{2}{3} \] Thus, \[ \boxed{\frac{2}{3}} \] ### Step 4: Find \( P(0 < X \leq 3) \) Since \( X \) can only take values 0, 1, and 2, we have: \[ P(0 < X \leq 3) = P(X=1) + P(X=2) \] Calculating \( P(X=1) \): \[ P(X=1) = 4c - 10c^2 = 4\left(\frac{1}{3}\right) - 10\left(\frac{1}{3}\right)^2 = \frac{4}{3} - \frac{10}{9} = \frac{12}{9} - \frac{10}{9} = \frac{2}{9} \] Now adding \( P(X=2) \): \[ P(0 < X \leq 3) = P(X=1) + P(X=2) = \frac{2}{9} + \frac{2}{3} = \frac{2}{9} + \frac{6}{9} = \frac{8}{9} \] Thus, \[ \boxed{\frac{8}{9}} \] ### Summary of Answers 1. \( c = \frac{1}{3} \) 2. \( P(X < 1) = \frac{1}{9} \) 3. \( P(1 < X \leq 2) = \frac{2}{3} \) 4. \( P(0 < X \leq 3) = \frac{8}{9} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

A random variable x had its range {0, 1, 2} and the probabilities are given by P(x=0)=3k^(3), P(x=1)=4k-10k^(2), P(x=2)=5k-1 where k is constant then k =

The random variable X can take only the values 0, 1, 2. Given that P(X=0) = P(X= 1) = p and E(X^2) = E(X) , then find the value of p

The random variable X can take only the values 0, 1,2 . Given that P(X=0) = P(X=1) = p and that E(X^2) = E(X) ; find the value of p .

The range of a random variable X is {1, 2, 3, ……..} and P(X=k)=(C^(k))/(lfloork) where k = 1, 2, 3,…. Find the value of C

The probability of a random variable X is given below Find P (X le 2 ) + P (X gt 2)

The probability distribution function of a random variable X is given by x_i :012 p_i :3c^34c-10 c^25c-1 Where c >0 . Find : (i) c (ii) P(X<2) (iii) P(1 <_X<=2) .

A random variable X takes the values 0,1,2,3,..., with prbability PX(=x)=k(x+1)((1)/(5))^x , where k is a constant, then P(X=0) is.

The random variable X can the values 0, 1, 2, 3, Give P(X = 0) = P(X = 1)= p and P(X = 2) = P(X = 3) such that sum p_i x_i^2=2sum p_i x_i then find the value of p

The range of random variable x={1, 2, 3….} and the probabilities are given by P(x=k)=(3^(CK))/(K!) (k = 1, 2, 3, ……) and C is a constant. Then C =

The probability distribution of a random variable x is given as under P(X=x)={{:(kx^(2),x="1,2,3"),(2kx,x="4,5,6"),("0,","otherwise"):} where, k is a constant. Calculate (i) E(X) (ii) E(3X^(2)) (iii) P(Xge4)