Home
Class 12
MATHS
In a binomial distribution, the paramete...

In a binomial distribution, the parameter `n=6`. If `9P(X=4)=P(X=2)`, then p=

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information about the binomial distribution. ### Step 1: Write down the given information We know that in a binomial distribution, the number of trials \( n = 6 \). We are given that \( 9P(X=4) = P(X=2) \). ### Step 2: Write the expressions for \( P(X=4) \) and \( P(X=2) \) The probability mass function for a binomial distribution is given by: \[ P(X=k) = \binom{n}{k} p^k q^{n-k} \] where \( q = 1 - p \). Thus, we can write: \[ P(X=4) = \binom{6}{4} p^4 q^{6-4} = \binom{6}{4} p^4 q^2 \] \[ P(X=2) = \binom{6}{2} p^2 q^{6-2} = \binom{6}{2} p^2 q^4 \] ### Step 3: Substitute these expressions into the equation Substituting into the equation \( 9P(X=4) = P(X=2) \): \[ 9 \cdot \binom{6}{4} p^4 q^2 = \binom{6}{2} p^2 q^4 \] ### Step 4: Simplify the equation We know that \( \binom{6}{4} = \binom{6}{2} \) (using the property \( \binom{n}{r} = \binom{n}{n-r} \)), so we can cancel \( \binom{6}{2} \) from both sides: \[ 9 p^4 q^2 = p^2 q^4 \] ### Step 5: Divide both sides by \( p^2 q^2 \) (assuming \( p \neq 0 \) and \( q \neq 0 \)) \[ 9 p^2 = q^2 \] ### Step 6: Substitute \( q = 1 - p \) Now, substituting \( q = 1 - p \) into the equation: \[ 9 p^2 = (1 - p)^2 \] ### Step 7: Expand and rearrange the equation Expanding the right side: \[ 9 p^2 = 1 - 2p + p^2 \] Rearranging gives: \[ 9 p^2 - p^2 + 2p - 1 = 0 \] \[ 8 p^2 + 2p - 1 = 0 \] ### Step 8: Use the quadratic formula to solve for \( p \) Using the quadratic formula \( p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 8 \), \( b = 2 \), and \( c = -1 \). \[ p = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 8 \cdot (-1)}}{2 \cdot 8} \] \[ p = \frac{-2 \pm \sqrt{4 + 32}}{16} \] \[ p = \frac{-2 \pm \sqrt{36}}{16} \] \[ p = \frac{-2 \pm 6}{16} \] ### Step 9: Calculate the two possible values for \( p \) Calculating the two possible values: 1. \( p = \frac{4}{16} = \frac{1}{4} \) 2. \( p = \frac{-8}{16} = -\frac{1}{2} \) ### Step 10: Determine the valid probability Since probabilities cannot be negative, we reject \( p = -\frac{1}{2} \). Thus, the valid solution is: \[ p = \frac{1}{4} \] ### Final Answer The value of \( p \) is \( \frac{1}{4} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If X follows a binomial distribution with parameters n=6 and p. If 4P(X=4))=P(X=2) , then P=

If X follows the binomial distribution with parameters n=6 and p and 9p(X=4)=P(X=2), then p is

If a binomial distribution have parameters 9, 1//3 then P(X=4)=

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

Assertion (A) : X is a binomial distribution with parameters n = 100 and p . If P (x = 50) = P ( x = 49) then p = (1)/(2) Reason (R) : For the binomial distribution (q + p)^n , P (x = k) = ""^(n) c_(k) .q^(n-k) .p^(k)

If X follows a binomial distribution with parameters n=100 and p = 1/3 , then P(X = r) is maximum when

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0