Home
Class 12
MATHS
If X is a Poisson variate such that P(X=...

If X is a Poisson variate such that `P(X=2)=9P(X=4)+90P(X=6)`, then mean of X is a) `1` b) ` 2` c) `1/2` d)`3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the mean of a Poisson random variable \( X \) given the equation: \[ P(X=2) = 9P(X=4) + 90P(X=6) \] ### Step 1: Write the Poisson Probability Mass Function (PMF) The PMF for a Poisson random variable \( X \) with mean \( \lambda \) is given by: \[ P(X = r) = \frac{e^{-\lambda} \lambda^r}{r!} \] ### Step 2: Substitute the PMF into the given equation Using the PMF, we can express \( P(X=2) \), \( P(X=4) \), and \( P(X=6) \): \[ P(X=2) = \frac{e^{-\lambda} \lambda^2}{2!} \] \[ P(X=4) = \frac{e^{-\lambda} \lambda^4}{4!} \] \[ P(X=6) = \frac{e^{-\lambda} \lambda^6}{6!} \] Substituting these into the equation gives: \[ \frac{e^{-\lambda} \lambda^2}{2} = 9 \cdot \frac{e^{-\lambda} \lambda^4}{24} + 90 \cdot \frac{e^{-\lambda} \lambda^6}{720} \] ### Step 3: Simplify the equation We can simplify the right-hand side: \[ 9 \cdot \frac{e^{-\lambda} \lambda^4}{24} = \frac{3}{8} e^{-\lambda} \lambda^4 \] \[ 90 \cdot \frac{e^{-\lambda} \lambda^6}{720} = \frac{1}{8} e^{-\lambda} \lambda^6 \] Now substituting these back into the equation: \[ \frac{e^{-\lambda} \lambda^2}{2} = \frac{3}{8} e^{-\lambda} \lambda^4 + \frac{1}{8} e^{-\lambda} \lambda^6 \] ### Step 4: Cancel out \( e^{-\lambda} \) Since \( e^{-\lambda} \) is common on both sides, we can cancel it out (assuming \( e^{-\lambda} \neq 0 \)): \[ \frac{\lambda^2}{2} = \frac{3}{8} \lambda^4 + \frac{1}{8} \lambda^6 \] ### Step 5: Multiply through by 8 to eliminate fractions Multiply the entire equation by 8: \[ 4\lambda^2 = 3\lambda^4 + \lambda^6 \] ### Step 6: Rearrange the equation Rearranging gives: \[ \lambda^6 + 3\lambda^4 - 4\lambda^2 = 0 \] ### Step 7: Factor out \( \lambda^2 \) Factoring out \( \lambda^2 \): \[ \lambda^2(\lambda^4 + 3\lambda^2 - 4) = 0 \] This gives us two cases: 1. \( \lambda^2 = 0 \) (which implies \( \lambda = 0 \), not valid for a Poisson distribution) 2. \( \lambda^4 + 3\lambda^2 - 4 = 0 \) ### Step 8: Let \( y = \lambda^2 \) Let \( y = \lambda^2 \): \[ y^2 + 3y - 4 = 0 \] ### Step 9: Solve the quadratic equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} = \frac{-3 \pm \sqrt{9 + 16}}{2} = \frac{-3 \pm 5}{2} \] Calculating the roots: 1. \( y = \frac{2}{2} = 1 \) 2. \( y = \frac{-8}{2} = -4 \) (not valid since \( y \) must be non-negative) Thus, \( y = 1 \) implies \( \lambda^2 = 1 \) or \( \lambda = 1 \). ### Conclusion: Mean of \( X \) The mean of \( X \) is \( \lambda = 1 \). Thus, the answer is: **Mean of \( X \) is \( 1 \)** (Option a).
Promotional Banner

Similar Questions

Explore conceptually related problems

If X is a Poisson variate and P(X=1)=2P(X=2) them P(X=3)=

If X is a poisson variate such that P(X=0)=P(X=1)=K , then show that K = 1/e

If X is a Poisson variate such that P(X=0)=P(X=1) , then the parameter lambda=

If X is a poisson distribution such that P(X=1)=P(X=2)then,P(X=4)=

If X is a Poisson variate with P(X=2)=(2)/(3)P(X=1) , find P(X=0) and P(X=3)

A poisson variate x is such that P(x=2)=9P(x=4)+90.P(x=6) then mean and standard deviation are

For a binomial variate X with n=6 , if P(X=2)=9P(X=4) , then its variance is

For a poisson variate X, P(X = 2) = 3P(X = 3) find variance of X.

If a random variable X has a Poisson distribution such that P(X=1)=P(X=2) then I: its mean is 2 II: its variance is 1

In a Poisson distribution P(X=0) =2P(X=1) then the standard deviation =