Home
Class 12
MATHS
If X is a Poisson variate with P(X=2)=...

If X is a Poisson variate with
`P(X=2)=(2)/(3)P(X=1)`, find `P(X=0)` and `P(X=3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P(X=0) \) and \( P(X=3) \) given that \( P(X=2) = \frac{2}{3} P(X=1) \) for a Poisson random variable \( X \) with parameter \( \lambda \). ### Step-by-Step Solution: 1. **Understand the Poisson Probability Formula**: The probability mass function for a Poisson random variable is given by: \[ P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \] where \( k \) is a non-negative integer. 2. **Set Up the Given Equation**: According to the problem, we have: \[ P(X=2) = \frac{2}{3} P(X=1) \] Using the Poisson formula, we can express this as: \[ \frac{e^{-\lambda} \lambda^2}{2!} = \frac{2}{3} \cdot \frac{e^{-\lambda} \lambda^1}{1!} \] 3. **Simplify the Equation**: Cancel \( e^{-\lambda} \) from both sides (since it is positive) and substitute the factorial values: \[ \frac{\lambda^2}{2} = \frac{2}{3} \cdot \lambda \] 4. **Multiply Both Sides by 6**: To eliminate the fractions, multiply both sides by 6: \[ 3\lambda^2 = 4\lambda \] 5. **Rearrange the Equation**: Rearranging gives us: \[ 3\lambda^2 - 4\lambda = 0 \] Factor out \( \lambda \): \[ \lambda(3\lambda - 4) = 0 \] This gives us two solutions: \( \lambda = 0 \) or \( \lambda = \frac{4}{3} \). Since \( \lambda = 0 \) is not a valid parameter for a Poisson distribution, we take: \[ \lambda = \frac{4}{3} \] 6. **Calculate \( P(X=0) \)**: Now we can find \( P(X=0) \): \[ P(X=0) = \frac{e^{-\lambda} \lambda^0}{0!} = e^{-\frac{4}{3}} \cdot 1 = e^{-\frac{4}{3}} \] Approximating \( e^{-\frac{4}{3}} \): \[ P(X=0) \approx 0.264 \] 7. **Calculate \( P(X=3) \)**: Now we find \( P(X=3) \): \[ P(X=3) = \frac{e^{-\lambda} \lambda^3}{3!} = \frac{e^{-\frac{4}{3}} \left(\frac{4}{3}\right)^3}{6} \] Calculate \( \left(\frac{4}{3}\right)^3 = \frac{64}{27} \): \[ P(X=3) = \frac{e^{-\frac{4}{3}} \cdot \frac{64}{27}}{6} = \frac{64 e^{-\frac{4}{3}}}{162} \] Approximating gives: \[ P(X=3) \approx 0.104 \] ### Final Answers: - \( P(X=0) \approx 0.264 \) - \( P(X=3) \approx 0.104 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If X is a Poisson variate and P(X=1)=2P(X=2) them P(X=3)=

If X is a binomial variate with n = 7 and P(X=3)=P(X=4) then P(X=5)=

If X is a Poisson variate such that P(X=2)=9P(X=4)+90P(X=6) , then mean of X is a) 1 b) 2 c) 1/2 d) 3/2

If X is a poisson variate such that P(X=0)=P(X=1)=K , then show that K = 1/e

If X is a Poisson variate such that P(X=0)=P(X=1) , then the parameter lambda=

If X is a poisson distribution such that P(X=1)=P(X=2)then,P(X=4)=

For a poisson variate X, P(X = 2) = 3P(X = 3) find variance of X.

A random variate X takes the values 0, 1, 2, 3 and its mean is 1.3. If P(X= 3) = 2P(X= 1) and P(X= 2) = 0.3 , then P(X= 0) is equal to

For a binomial variate X if n=5, and P(X=1)=8P(X=3), thenp=

In a Poisson distribution if P(X=0)=P(X=1)=k , the value of k is