Home
Class 12
MATHS
If a binomial distribution have paramete...

If a binomial distribution have parameters `9, 1//3` then P(X=4)=

A

`(448)/(2187)`

B

`(224)/(1186)`

C

`(112)/(1046)`

D

`(94)/(886)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( P(X = 4) \) for a binomial distribution with parameters \( n = 9 \) and \( p = \frac{1}{3} \), we will use the binomial probability formula: \[ P(X = r) = \binom{n}{r} p^r q^{n - r} \] where: - \( n \) is the number of trials, - \( r \) is the number of successful trials, - \( p \) is the probability of success on a single trial, - \( q \) is the probability of failure on a single trial, which can be calculated as \( q = 1 - p \). ### Step-by-Step Solution: 1. **Identify the parameters**: - Given \( n = 9 \) and \( p = \frac{1}{3} \). - Calculate \( q \): \[ q = 1 - p = 1 - \frac{1}{3} = \frac{2}{3} \] 2. **Set the value of \( r \)**: - We need to find \( P(X = 4) \), so \( r = 4 \). 3. **Apply the binomial probability formula**: - Substitute \( n \), \( r \), \( p \), and \( q \) into the formula: \[ P(X = 4) = \binom{9}{4} \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^{9 - 4} \] 4. **Calculate \( \binom{9}{4} \)**: - The binomial coefficient \( \binom{9}{4} \) can be calculated as: \[ \binom{9}{4} = \frac{9!}{4!(9-4)!} = \frac{9!}{4!5!} = \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} = 126 \] 5. **Calculate \( \left(\frac{1}{3}\right)^4 \)**: - Compute \( \left(\frac{1}{3}\right)^4 \): \[ \left(\frac{1}{3}\right)^4 = \frac{1}{81} \] 6. **Calculate \( \left(\frac{2}{3}\right)^5 \)**: - Compute \( \left(\frac{2}{3}\right)^5 \): \[ \left(\frac{2}{3}\right)^5 = \frac{32}{243} \] 7. **Combine all parts**: - Now substitute back into the probability formula: \[ P(X = 4) = 126 \times \frac{1}{81} \times \frac{32}{243} \] 8. **Simplify the expression**: - First, multiply \( 126 \) and \( 32 \): \[ 126 \times 32 = 4032 \] - Now multiply the denominators: \[ 81 \times 243 = 19683 \] - Thus, we have: \[ P(X = 4) = \frac{4032}{19683} \] ### Final Result: \[ P(X = 4) = \frac{4032}{19683} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

In a binomial distribution, the parameter n=6 . If 9P(X=4)=P(X=2) , then p=

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If a random variable X has a Poisson distribution with parameter 1//2 , then P(X=2)=

If X follows the binomial distribution with parameters n=6 and p and 9p(X=4)=P(X=2), then p is

If X follows a binomial distribution with parameters n=6 and p. If 4P(X=4))=P(X=2) , then P=

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

If X follows a binomial distribution with parameters n=100 and p = 1/3 , then P(X = r) is maximum when

Assertion (A) : X is a binomial distribution with parameters n = 100 and p . If P (x = 50) = P ( x = 49) then p = (1)/(2) Reason (R) : For the binomial distribution (q + p)^n , P (x = k) = ""^(n) c_(k) .q^(n-k) .p^(k)

X follows a binomial distribution with parameters n and p where 0ltPlt1 . If (P(X=r))/(P(X=n-r)) is independent of n and r then p=