Home
Class 12
MATHS
If X is a Poisson variate and P(X=1)=2P(...

If X is a Poisson variate and P(X=1)=2P(X=2) them P(X=3)=

A

`(e^(-1))/(6)`

B

`(e^(-2))/(2)`

C

`(e^(-1))/(2)`

D

`(e^(-1))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P(X=3) \) given that \( P(X=1) = 2P(X=2) \) for a Poisson random variable \( X \) with parameter \( \lambda \). ### Step-by-Step Solution: 1. **Recall the Poisson Probability Formula**: The probability mass function for a Poisson random variable is given by: \[ P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!} \] 2. **Set Up the Equations**: From the problem statement, we have: \[ P(X=1) = 2P(X=2) \] Using the Poisson formula, we can express this as: \[ \frac{e^{-\lambda} \lambda^1}{1!} = 2 \cdot \frac{e^{-\lambda} \lambda^2}{2!} \] 3. **Simplify the Equation**: Substitute the factorials: \[ \frac{e^{-\lambda} \lambda}{1} = 2 \cdot \frac{e^{-\lambda} \lambda^2}{2} \] This simplifies to: \[ e^{-\lambda} \lambda = e^{-\lambda} \lambda^2 \] 4. **Cancel Common Terms**: Since \( e^{-\lambda} \) is non-zero, we can divide both sides by \( e^{-\lambda} \): \[ \lambda = \lambda^2 \] 5. **Rearrange the Equation**: Rearranging gives: \[ \lambda^2 - \lambda = 0 \] Factor this equation: \[ \lambda(\lambda - 1) = 0 \] 6. **Find Possible Values for \( \lambda \)**: This gives us two solutions: \[ \lambda = 0 \quad \text{or} \quad \lambda = 1 \] Since \( \lambda = 0 \) does not make sense in the context of a Poisson distribution, we take \( \lambda = 1 \). 7. **Calculate \( P(X=3) \)**: Now, we can find \( P(X=3) \) using \( \lambda = 1 \): \[ P(X=3) = \frac{e^{-1} \cdot 1^3}{3!} = \frac{e^{-1}}{6} \] 8. **Final Answer**: Therefore, the value of \( P(X=3) \) is: \[ P(X=3) = \frac{e^{-1}}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If X is a Poisson variate such that P(X=0)=P(X=1) , then the parameter lambda=

If X is a Poisson variate such that P(X=2)=9P(X=4)+90P(X=6) , then mean of X is a) 1 b) 2 c) 1/2 d) 3/2

If X is a poisson variate such that P(X=0)=P(X=1)=K , then show that K = 1/e

If X is a Poisson variate with P(X=2)=(2)/(3)P(X=1) , find P(X=0) and P(X=3)

If X is a poisson distribution such that P(X=1)=P(X=2)then,P(X=4)=

If X is a binomial variate with n = 7 and P(X=3)=P(X=4) then P(X=5)=

If a random variable X has a Poisson distribution such that P(X=1)=P(X=2) then I: its mean is 2 II: its variance is 1

For a binomial variate X if n=5, and P(X=1)=8P(X=3), thenp=

In a Poisson distribution P(X=0) =2P(X=1) then the standard deviation =

For a poisson variate X, P(X = 2) = 3P(X = 3) find variance of X.