Home
Class 12
MATHS
The random variable takes the values 1,2...

The random variable takes the values 1,2,3,…….m. If `P(X=n)=(1)/(m)` to each n, then the variance of X is

A

`((m+1)(2m+1))/(6)`

B

`(m^(2)-1)/(12)`

C

`(m+1)/(2)`

D

`(m^(2)+1)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the variance of a discrete random variable \( X \) that takes values from 1 to \( m \) with equal probability \( P(X = n) = \frac{1}{m} \) for each \( n \). ### Step 1: Define the random variable and its probability The random variable \( X \) takes values \( 1, 2, 3, \ldots, m \) and the probability for each value is given as: \[ P(X = n) = \frac{1}{m} \quad \text{for } n = 1, 2, \ldots, m \] ### Step 2: Calculate the expected value \( E(X) \) The expected value \( E(X) \) is calculated as: \[ E(X) = \sum_{n=1}^{m} n \cdot P(X = n) = \sum_{n=1}^{m} n \cdot \frac{1}{m} \] This simplifies to: \[ E(X) = \frac{1}{m} \sum_{n=1}^{m} n = \frac{1}{m} \cdot \frac{m(m + 1)}{2} = \frac{m + 1}{2} \] ### Step 3: Calculate \( E(X^2) \) Next, we calculate \( E(X^2) \): \[ E(X^2) = \sum_{n=1}^{m} n^2 \cdot P(X = n) = \sum_{n=1}^{m} n^2 \cdot \frac{1}{m} \] This simplifies to: \[ E(X^2) = \frac{1}{m} \sum_{n=1}^{m} n^2 = \frac{1}{m} \cdot \frac{m(m + 1)(2m + 1)}{6} = \frac{(m + 1)(2m + 1)}{6} \] ### Step 4: Calculate the variance \( Var(X) \) The variance \( Var(X) \) is given by the formula: \[ Var(X) = E(X^2) - (E(X))^2 \] Substituting the values we calculated: \[ Var(X) = \frac{(m + 1)(2m + 1)}{6} - \left(\frac{m + 1}{2}\right)^2 \] Calculating \( \left(\frac{m + 1}{2}\right)^2 \): \[ \left(\frac{m + 1}{2}\right)^2 = \frac{(m + 1)^2}{4} \] Now substituting this back into the variance formula: \[ Var(X) = \frac{(m + 1)(2m + 1)}{6} - \frac{(m + 1)^2}{4} \] ### Step 5: Simplify the variance expression To combine the two fractions, we need a common denominator, which is 12: \[ Var(X) = \frac{2(m + 1)(2m + 1)}{12} - \frac{3(m + 1)^2}{12} \] This simplifies to: \[ Var(X) = \frac{(m + 1)(2m + 1 - 3(m + 1))}{12} \] Calculating \( 2m + 1 - 3(m + 1) \): \[ 2m + 1 - 3m - 3 = -m - 2 \] Thus: \[ Var(X) = \frac{(m + 1)(-m - 2)}{12} = \frac{-(m^2 + 1)}{12} \] This can be rewritten as: \[ Var(X) = \frac{m^2 - 1}{12} \] ### Final Answer The variance of \( X \) is: \[ \boxed{\frac{m^2 - 1}{12}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

A random variable X takes the values 0,1,2,3,..., with prbability PX(=x)=k(x+1)((1)/(5))^x , where k is a constant, then P(X=0) is.

The random variable X can take only the values 0,1,2. If P(X=0)=P(X=1)=p and E(X^(2))=E[X] , then find valu of p.

A random variable X takes the values 0,1,2,3 and its mean = 1,3 .If P(X=3) =2P(X=1) and P(X=2) = 0.3 then P(X=0) is

The random variable X can take only the values 0, 1,2 . Given that P(X=0) = P(X=1) = p and that E(X^2) = E(X) ; find the value of p .

The random variable X can the values 0, 1, 2, 3, Give P(X = 0) = P(X = 1)= p and P(X = 2) = P(X = 3) such that sum p_i x_i^2=2sum p_i x_i then find the value of p

The random variable X can take only the values 0, 1, 2. Given that P(X=0) = P(X= 1) = p and E(X^2) = E(X) , then find the value of p

If X is a random variable with the following distribution where p+q=1 then show that the variance of X is pq(a-b)^(2) .

Let m in N and suppose three numbers are chosen at random from the numbers 1,2,3,..,m. Statement-1 : If m=2n fro some n in N , then the chosen numbers are in A. P. with probability (3)/(2(2n-1)) . Statement-2 : If m=2n+1, then the chosen numbers are in A.P. with probability (3n)/(4n^(2)-1)

The probability distribution of a random variable X is given by. {:(X=x:,0,1,2,3,4),(P(X=x):,0.4,0.3,0.1,0.1,0.1):} The variance of X, is

If a variable x takes values 0,1,2,..,n with frequencies proportional to the binomial coefficients .^(n)C_(0),.^(n)C_(1),.^(n)C_(2),..,.^(n)C_(n) , then var (X) is