Home
Class 12
MATHS
For a binomial variate X if n=5, and P(X...

For a binomial variate X if `n=5,` and P(X=1)=8P(X=3), thenp=

A

`(4)/(5)`

B

`(1)/(5)`

C

`(1)/(3)`

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( p \) for a binomial random variable \( X \) with \( n = 5 \) given that \( P(X = 1) = 8P(X = 3) \). ### Step-by-Step Solution: 1. **Understand the Binomial Probability Formula**: The probability of getting exactly \( r \) successes in \( n \) trials in a binomial distribution is given by: \[ P(X = r) = \binom{n}{r} p^r (1 - p)^{n - r} \] where \( \binom{n}{r} \) is the binomial coefficient. 2. **Set Up the Given Equation**: We know that: \[ P(X = 1) = 8P(X = 3) \] Using the binomial probability formula, we can write: \[ P(X = 1) = \binom{5}{1} p^1 (1 - p)^{5 - 1} \] and \[ P(X = 3) = \binom{5}{3} p^3 (1 - p)^{5 - 3} \] 3. **Substitute the Values**: Calculate the binomial coefficients: \[ \binom{5}{1} = 5 \quad \text{and} \quad \binom{5}{3} = 10 \] Therefore, we can rewrite the probabilities: \[ P(X = 1) = 5p(1 - p)^4 \] \[ P(X = 3) = 10p^3(1 - p)^2 \] 4. **Set Up the Equation**: Substitute these into the equation: \[ 5p(1 - p)^4 = 8 \times 10p^3(1 - p)^2 \] Simplifying gives: \[ 5p(1 - p)^4 = 80p^3(1 - p)^2 \] 5. **Cancel Common Terms**: Assuming \( p \neq 0 \) and \( 1 - p \neq 0 \), we can divide both sides by \( p(1 - p)^2 \): \[ 5(1 - p)^2 = 80p^2 \] 6. **Expand and Rearrange**: Expanding the left side: \[ 5(1 - 2p + p^2) = 80p^2 \] This simplifies to: \[ 5 - 10p + 5p^2 = 80p^2 \] Rearranging gives: \[ 5 - 10p - 75p^2 = 0 \] or: \[ 75p^2 + 10p - 5 = 0 \] 7. **Solve the Quadratic Equation**: Using the quadratic formula \( p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 75, b = 10, c = -5 \): \[ p = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 75 \cdot (-5)}}{2 \cdot 75} \] \[ = \frac{-10 \pm \sqrt{100 + 1500}}{150} \] \[ = \frac{-10 \pm \sqrt{1600}}{150} \] \[ = \frac{-10 \pm 40}{150} \] 8. **Calculate the Possible Values of \( p \)**: This gives two potential solutions: \[ p = \frac{30}{150} = \frac{1}{5} \quad \text{and} \quad p = \frac{-50}{150} \text{ (not valid since } p \text{ must be between 0 and 1)} \] 9. **Final Answer**: Thus, the value of \( p \) is: \[ p = \frac{1}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For a binomial variate X , if n=3\ a n d\ P(X=1)=8\ P(X=3),\ t h e n\ p= a. 4/5 b. 1/5 c. 1/3 d. None of these

For a binomial variate X , if n = 3 and 4P (X=1) = 3P (X=3) , then p (probability of success)

For a binomial variate X , if n = 3 and P(X =1) = 12 P(X =3) , then the value of p is

For a binomial variate X with n=6 , if P(X=2)=9P(X=4) , then its variance is

For a binomial variate X , if n = 4 and P(X=0) = 16/81 then P(X =4) is

If X is a binomial variate with n = 7 and P(X=3)=P(X=4) then P(X=5)=

For a binimial variate X with n=6, if P(X=4)=(135)/(2^(12)) then its variance is

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

A binomial random variable X, 5P(X = 3) = 2P(X = 2), when n = 5. Find the value of parameter p.

The mean and standard deviation of a binomial variate X are 4 and sqrt(3) respectively. Then , P(Xge1)=