Home
Class 12
MATHS
X follows a binomial distribution with p...

`X` follows a binomial distribution with parameters `n` and `p` where `0ltPlt1` . If `(P(X=r))/(P(X=n-r))` is independent of `n`and `r` then `p=`

A

`(1)/(2)`

B

`(1)/(3)`

C

`(1)/(4)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( p \) such that the ratio \( \frac{P(X=r)}{P(X=n-r)} \) is independent of \( n \) and \( r \). ### Step-by-step Solution: 1. **Understand the Binomial Probability Formula**: The probability mass function for a binomial distribution is given by: \[ P(X = r) = \binom{n}{r} p^r (1-p)^{n-r} \] where \( \binom{n}{r} \) is the binomial coefficient, \( p \) is the probability of success, and \( (1-p) \) is the probability of failure. 2. **Write the Probability for \( P(X=n-r) \)**: Similarly, we can express \( P(X=n-r) \): \[ P(X = n-r) = \binom{n}{n-r} p^{n-r} (1-p)^{r} \] Note that \( \binom{n}{n-r} = \binom{n}{r} \). 3. **Set Up the Ratio**: Now, we can set up the ratio: \[ \frac{P(X=r)}{P(X=n-r)} = \frac{\binom{n}{r} p^r (1-p)^{n-r}}{\binom{n}{r} p^{n-r} (1-p)^{r}} \] Since \( \binom{n}{r} \) cancels out, we have: \[ \frac{P(X=r)}{P(X=n-r)} = \frac{p^r (1-p)^{n-r}}{p^{n-r} (1-p)^{r}} = \frac{p^r}{p^{n-r}} \cdot \frac{(1-p)^{n-r}}{(1-p)^{r}} = \frac{p^r (1-p)^{n-r}}{p^{n-r} (1-p)^{r}} = \left(\frac{p}{1-p}\right)^{r} \cdot (1-p)^{n-2r} \] 4. **Independence Condition**: For the ratio to be independent of \( n \) and \( r \), the expression \( (1-p)^{n-2r} \) must not depend on \( n \) or \( r \). This can only happen if the exponent \( n-2r = 0 \) or if \( \frac{1-p}{p} = 1 \). 5. **Solve for \( p \)**: Setting \( \frac{1-p}{p} = 1 \): \[ 1 - p = p \implies 1 = 2p \implies p = \frac{1}{2} \] Thus, the value of \( p \) is \( \frac{1}{2} \). ### Final Answer: \[ p = \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

If X follows a binomial distribution with parameters n=6 and p. If 4P(X=4))=P(X=2) , then P=

If X follows a binomial distribution with parameters n=100 and p = 1/3 , then P(X = r) is maximum when

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows the binomial distribution with parameters n=6 and p and 9p(X=4)=P(X=2), then p is

If a binomial distribution have parameters 9, 1//3 then P(X=4)=

If X has binomial distribution with mean np and variance npq, then (P(X = r))/(P(X = r - 1)) is equal to