Home
Class 12
MATHS
Assertion (A) : X is a binomial distribu...

Assertion (A) : X is a binomial distribution with parameters n = 100 and p .
If P (x = 50) = P ( x = 49) then p = `(1)/(2)`
Reason (R) : For the binomial distribution `(q + p)^n , P (x = k) = ""^(n) c_(k) .q^(n-k) .p^(k)`

A

A is false , R is true

B

A is true , R is fals

C

A , R are true but R `implies` A

D

A , R are true , and `R cancelimplies A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the assertion and the reason given in the question. ### Step 1: Understand the Assertion The assertion states that if \( P(X = 50) = P(X = 49) \) for a binomial distribution with parameters \( n = 100 \) and \( p \), then \( p = \frac{1}{2} \). ### Step 2: Write the Probability Formulas For a binomial distribution, the probability mass function is given by: \[ P(X = k) = \binom{n}{k} p^k q^{n-k} \] where \( q = 1 - p \). ### Step 3: Set Up the Equations We need to set up the equations for \( P(X = 50) \) and \( P(X = 49) \): 1. \( P(X = 50) = \binom{100}{50} p^{50} q^{50} \) 2. \( P(X = 49) = \binom{100}{49} p^{49} q^{51} \) ### Step 4: Equate the Two Probabilities Set the two probabilities equal to each other: \[ \binom{100}{50} p^{50} q^{50} = \binom{100}{49} p^{49} q^{51} \] ### Step 5: Simplify the Equation Using the property of binomial coefficients: \[ \binom{100}{49} = \frac{100}{51} \binom{100}{50} \] Substituting this into the equation gives: \[ \binom{100}{50} p^{50} q^{50} = \frac{100}{51} \binom{100}{50} p^{49} q^{51} \] Dividing both sides by \( \binom{100}{50} \) (assuming it is not zero): \[ p^{50} q^{50} = \frac{100}{51} p^{49} q^{51} \] ### Step 6: Rearranging the Equation Rearranging gives: \[ p q = \frac{100}{51} \] ### Step 7: Substitute \( q \) Since \( q = 1 - p \), we can substitute: \[ p(1 - p) = \frac{100}{51} \] ### Step 8: Solve the Quadratic Equation This leads to the quadratic equation: \[ p - p^2 = \frac{100}{51} \] Rearranging gives: \[ p^2 - p + \frac{100}{51} = 0 \] ### Step 9: Use the Quadratic Formula Using the quadratic formula \( p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ p = \frac{1 \pm \sqrt{1 - 4 \cdot 1 \cdot \frac{100}{51}}}{2} \] ### Step 10: Analyze the Roots Calculating the discriminant: \[ 1 - \frac{400}{51} = \frac{51 - 400}{51} = \frac{-349}{51} \] Since the discriminant is negative, there are no real solutions for \( p \) that satisfy the equation. ### Conclusion Thus, the assertion \( P(X = 50) = P(X = 49) \) does not imply \( p = \frac{1}{2} \), making the assertion false. The reason provided is true as it correctly describes the binomial distribution. ### Final Answer - Assertion (A) is false. - Reason (R) is true.
Promotional Banner

Similar Questions

Explore conceptually related problems

If X follows a binomial distribution with parameters n=6 and p. If 4P(X=4))=P(X=2) , then P=

If X follows a binomial distribution with parameters n=100 and p = 1/3 , then P(X = r) is maximum when

If X follows the binomial distribution with parameters n=6 and p and 9p(X=4)=P(X=2), then p is

In a binomial distribution, the parameter n=6 . If 9P(X=4)=P(X=2) , then p=

If a binomial distribution have parameters 9, 1//3 then P(X=4)=

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X has a binomial distribution, B (n,p) with parameters n and p such that P(X=2)=P(X=3) , then E(X) , the mean of variable X , is

If in a binomial distribution n=4 \ and \ P(X = 0) = (16)/(81) , find q .