Home
Class 12
MATHS
The roots of the equation 6 sqrt(5)...

The roots of the equation ` 6 sqrt(5) x^(2) - 9x - 3sqrt(5) = 0` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the roots of the quadratic equation \( 6\sqrt{5}x^2 - 9x - 3\sqrt{5} = 0 \), we can follow these steps: ### Step 1: Identify the coefficients The given equation is in the standard form \( ax^2 + bx + c = 0 \), where: - \( a = 6\sqrt{5} \) - \( b = -9 \) - \( c = -3\sqrt{5} \) ### Step 2: Calculate the discriminant The discriminant \( D \) is given by the formula: \[ D = b^2 - 4ac \] Substituting the values of \( a \), \( b \), and \( c \): \[ D = (-9)^2 - 4(6\sqrt{5})(-3\sqrt{5}) \] Calculating each term: \[ D = 81 - 4 \cdot 6\sqrt{5} \cdot (-3\sqrt{5}) \] \[ D = 81 + 4 \cdot 6 \cdot 3 \cdot 5 \] \[ D = 81 + 72 = 153 \] ### Step 3: Find the roots using the quadratic formula The roots of the quadratic equation can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{D}}{2a} \] Substituting the values of \( b \), \( D \), and \( a \): \[ x = \frac{-(-9) \pm \sqrt{153}}{2(6\sqrt{5})} \] \[ x = \frac{9 \pm \sqrt{153}}{12\sqrt{5}} \] ### Step 4: Simplify the roots Now we can simplify \( \sqrt{153} \): \[ \sqrt{153} = \sqrt{9 \cdot 17} = 3\sqrt{17} \] Substituting this back into the equation for \( x \): \[ x = \frac{9 \pm 3\sqrt{17}}{12\sqrt{5}} \] This can be further simplified: \[ x = \frac{3(3 \pm \sqrt{17})}{12\sqrt{5}} = \frac{3 \pm \sqrt{17}}{4\sqrt{5}} \] ### Final Roots Thus, the roots of the equation \( 6\sqrt{5}x^2 - 9x - 3\sqrt{5} = 0 \) are: \[ x_1 = \frac{3 + \sqrt{17}}{4\sqrt{5}}, \quad x_2 = \frac{3 - \sqrt{17}}{4\sqrt{5}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: sqrt(5)x^(2) + x + sqrt(5) = 0

Find the roots of the equations: sqrt(3)x^(2)-sqrt(2)x+3sqrt(3)=0 .

The roots of the equation 4x^2-2sqrt5 x +1=0 are .

The roots of the equation x^(2)-2sqrt(3)x+3=0 are

The harmonic mean of the roots of the equation (5+sqrt(2))x^2-(4+sqrt(5))x+8+2sqrt(5)=0 is 2 b. 4 c. 6 d. 8

The harmonic mean of the roots of the equation (5+sqrt(2))x^2-(4+sqrt(5))x+8+2sqrt(5)=0 is a. 2 b. 4 c. 6 d. 8

Find the roots of the following quadratic equations i) 6sqrt5 x^(2) – 9x -3sqrt5 = 0 ii) x^(2) - x - 12 = 0 iii) 2x^(2) - 6x + 7 = 0 iv) 4x^(2) - 4x+17 = 3x^(2) -10x-17 v) x^(2) + 6x + 34 = 0 vi) 3x^(2) + 2x - 5 = 0

Factorise: sqrt5 x^(2) + 2x- 3sqrt5