Home
Class 12
MATHS
Solve 3^(1+x)+3^(1-x)=10....

Solve `3^(1+x)+3^(1-x)=10`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3^{1+x} + 3^{1-x} = 10 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 3^{1+x} + 3^{1-x} = 10 \] We can rewrite \( 3^{1+x} \) as \( 3 \cdot 3^x \) and \( 3^{1-x} \) as \( 3 \cdot 3^{-x} \): \[ 3 \cdot 3^x + 3 \cdot 3^{-x} = 10 \] ### Step 2: Factor out the common term Now, factor out the 3 from the left side: \[ 3(3^x + 3^{-x}) = 10 \] Dividing both sides by 3 gives: \[ 3^x + 3^{-x} = \frac{10}{3} \] ### Step 3: Substitute \( t \) Let \( t = 3^x \). Then \( 3^{-x} \) can be written as \( \frac{1}{t} \): \[ t + \frac{1}{t} = \frac{10}{3} \] ### Step 4: Multiply through by \( t \) To eliminate the fraction, multiply through by \( t \): \[ t^2 + 1 = \frac{10}{3}t \] Rearranging gives us: \[ t^2 - \frac{10}{3}t + 1 = 0 \] ### Step 5: Clear the fraction To make calculations easier, multiply the entire equation by 3: \[ 3t^2 - 10t + 3 = 0 \] ### Step 6: Use the quadratic formula Now we can use the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 3, b = -10, c = 3 \): \[ t = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \cdot 3 \cdot 3}}{2 \cdot 3} \] Calculating the discriminant: \[ t = \frac{10 \pm \sqrt{100 - 36}}{6} \] \[ t = \frac{10 \pm \sqrt{64}}{6} \] \[ t = \frac{10 \pm 8}{6} \] ### Step 7: Solve for \( t \) This gives us two possible solutions for \( t \): 1. \( t = \frac{18}{6} = 3 \) 2. \( t = \frac{2}{6} = \frac{1}{3} \) ### Step 8: Substitute back for \( x \) Recall that \( t = 3^x \): 1. For \( t = 3 \): \[ 3^x = 3 \implies x = 1 \] 2. For \( t = \frac{1}{3} \): \[ 3^x = \frac{1}{3} \implies x = -1 \] ### Final Answer Thus, the solutions for \( x \) are: \[ x = -1 \quad \text{and} \quad x = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 3^(x2) : 3^(x) = 9 : 1

Solve 5^(x+1)+5^(2-x)=5^3+1

Solve |x-3|^(3x^(2)-10x+3)= 1 .

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

Solve : log_(1- x )(3-x)=log_(3-x)(1-x)

Solve |(x-3)/(x+1)|lt=1.

Solve x^(3) +x^(2)+x+1 .

Solve: |x-3|^(3x^2-10 x+3)=1

Solve : (2x+1)/(3x-2)=9/(10)

Solve for x : 3^(4x + 1) = (27)^(x + 1)