Home
Class 12
MATHS
Solve sqrt((x)/(x-3))+sqrt((x-3)/(x))=(5...

Solve `sqrt((x)/(x-3))+sqrt((x-3)/(x))=(5)/(2)` (`x != 0, x != 3`)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sqrt{\frac{x}{x-3}} + \sqrt{\frac{x-3}{x}} = \frac{5}{2} \] where \(x \neq 0\) and \(x \neq 3\), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sqrt{\frac{x}{x-3}} + \sqrt{\frac{x-3}{x}} = \frac{5}{2} \] ### Step 2: Take LCM To combine the square roots on the left side, we take the LCM. The LCM of the denominators \(x\) and \(x-3\) is \(\sqrt{x} \cdot \sqrt{x-3}\). Thus, we rewrite the left side: \[ \frac{\sqrt{x} \cdot \sqrt{x} + \sqrt{x-3} \cdot \sqrt{x-3}}{\sqrt{x} \cdot \sqrt{x-3}} = \frac{5}{2} \] This simplifies to: \[ \frac{\sqrt{x}^2 + \sqrt{x-3}^2}{\sqrt{x} \cdot \sqrt{x-3}} = \frac{5}{2} \] ### Step 3: Simplify the numerator The numerator simplifies to: \[ \frac{x + (x - 3)}{\sqrt{x(x-3)}} = \frac{2x - 3}{\sqrt{x(x-3)}} \] So now we have: \[ \frac{2x - 3}{\sqrt{x(x-3)}} = \frac{5}{2} \] ### Step 4: Cross-multiply Cross-multiplying gives us: \[ 2(2x - 3) = 5\sqrt{x(x-3)} \] This simplifies to: \[ 4x - 6 = 5\sqrt{x(x-3)} \] ### Step 5: Square both sides Next, we square both sides to eliminate the square root: \[ (4x - 6)^2 = (5\sqrt{x(x-3)})^2 \] Expanding both sides results in: \[ 16x^2 - 48x + 36 = 25x(x - 3) \] ### Step 6: Expand the right side Expanding the right side gives: \[ 16x^2 - 48x + 36 = 25x^2 - 75x \] ### Step 7: Rearrange the equation Rearranging all terms to one side results in: \[ 16x^2 - 25x^2 + 75x - 48x + 36 = 0 \] This simplifies to: \[ -9x^2 + 27x + 36 = 0 \] ### Step 8: Multiply through by -1 To make the leading coefficient positive, we multiply through by -1: \[ 9x^2 - 27x - 36 = 0 \] ### Step 9: Factor the quadratic We can factor this quadratic equation: \[ 9(x^2 - 3x - 4) = 0 \] Factoring further gives: \[ 9(x - 4)(x + 1) = 0 \] ### Step 10: Solve for \(x\) Setting each factor to zero gives us: \[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \] \[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \] ### Final Solution Thus, the solutions to the equation are: \[ x = 4 \quad \text{and} \quad x = -1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : (i) sqrt((x)/(x-3))+sqrt((x-3)/(x))=(5)/(2) (ii) ((2x-3)/(x-1))-4((x-1)/(2x-3))=3

Solve sqrt(x-1)>sqrt(3-x)dot

Solve x + sqrt(x ) ge sqrt( x )-3

Solve sqrt(3x)-sqrt(x)=2 .

Solve : (sqrt(3))^(x-3)=(sqrt(3))^((x+1)/4)

Solve sqrt(2x+1)+sqrt(3x+2)=sqrt(5x+3)

Solve: 4sqrt(3)x^(2)+5x-2sqrt(3)=0.

Solve sqrt(3x^2-7x-30)+sqrt(2x^2-7x-5)=x+5.

Solve x+sqrt(x)geqsqrt(x)-3 .

Solve sqrt((x-3)(2-x)) lt sqrt(4x^(2)+12x+11) .