Home
Class 12
MATHS
Determine the sign of the expression i...

Determine the sign of the expression
i) `x^(2)+x+1` ii) `-x^(2)+x-1` for `x in R`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the sign of the expressions \( i) \, x^2 + x + 1 \) and \( ii) \, -x^2 + x - 1 \) for \( x \in \mathbb{R} \), we will analyze each expression using the properties of quadratic functions. ### Step-by-Step Solution: #### Part i: \( x^2 + x + 1 \) 1. **Identify coefficients**: - The expression is in the form \( ax^2 + bx + c \). - Here, \( a = 1 \), \( b = 1 \), and \( c = 1 \). 2. **Calculate the discriminant \( D \)**: - The discriminant \( D \) is given by \( D = b^2 - 4ac \). - Substituting the values, we get: \[ D = 1^2 - 4 \cdot 1 \cdot 1 = 1 - 4 = -3 \] 3. **Analyze the sign of \( a \) and \( D \)**: - Since \( a = 1 > 0 \) and \( D = -3 < 0 \), we can use the properties of quadratic functions. - For a quadratic function where \( a > 0 \) and \( D < 0 \), the function is positive for all \( x \in \mathbb{R} \). 4. **Conclusion for part i**: - Therefore, \( x^2 + x + 1 > 0 \) for all \( x \in \mathbb{R} \). #### Part ii: \( -x^2 + x - 1 \) 1. **Identify coefficients**: - The expression is also in the form \( ax^2 + bx + c \). - Here, \( a = -1 \), \( b = 1 \), and \( c = -1 \). 2. **Calculate the discriminant \( D \)**: - Again, we use \( D = b^2 - 4ac \). - Substituting the values, we get: \[ D = 1^2 - 4 \cdot (-1) \cdot (-1) = 1 - 4 = -3 \] 3. **Analyze the sign of \( a \) and \( D \)**: - Here, \( a = -1 < 0 \) and \( D = -3 < 0 \). - For a quadratic function where \( a < 0 \) and \( D < 0 \), the function is negative for all \( x \in \mathbb{R} \). 4. **Conclusion for part ii**: - Therefore, \( -x^2 + x - 1 < 0 \) for all \( x \in \mathbb{R} \). ### Final Answers: - i) \( x^2 + x + 1 > 0 \) for all \( x \in \mathbb{R} \) - ii) \( -x^2 + x - 1 < 0 \) for all \( x \in \mathbb{R} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the expression (x^(2)+x+1)/(2x^(2)-x+1) , for x in R , is

The number of integral values which can be taken by the expression, f (x) = (x ^(3)-1)/((x-1) (x ^(2) -x+1)) for x in R, is: 1 2 3 infinite

Discuss the sign of the following expressions when x is real i) x^(2)-5x+6 ii) x^(2)-x+3

Find the maximum or minimum values of the following expressions on R i) x^(2) + 6x – 27 ii) 3x^(2) + 2x + 7 iii) x^(2) - 12x + 32 iv) 2x^(2) + 3x + 1

Determine the sign of the function 3x^(2)-2x+1 for real values of x.

Determine the value of 'a' so that the expression x^(2)-2(a+1)x+4, x in R is always positive.

For what value of x in R the following expressions are negative i) x^(2) - 5x - 6 ii) -7x^(2) + 8x - 9

Simplify the expression 8(x^(2)-x-1) + 5 (2x-2) - 3 (x^(2) +x - 1)

If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2x+1) is

The minimum value of the expression 2 ^(x) + 2 ^(2x +1) + (5)/(2 ^(x)) ,x in R is :