Home
Class 12
MATHS
Find the maximum or minimum values of th...

Find the maximum or minimum values of the following expressions on R
`2x + 5 – 3x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum or minimum values of the expression \( f(x) = 2x + 5 - 3x^2 \), we can follow these steps: ### Step 1: Identify the function We start by defining the function: \[ f(x) = 2x + 5 - 3x^2 \] ### Step 2: Find the first derivative To find the critical points, we need to calculate the first derivative of the function: \[ f'(x) = \frac{d}{dx}(2x + 5 - 3x^2) \] Calculating this gives: \[ f'(x) = 2 - 6x \] ### Step 3: Set the first derivative to zero Next, we set the first derivative equal to zero to find the critical points: \[ 2 - 6x = 0 \] Solving for \( x \): \[ 6x = 2 \quad \Rightarrow \quad x = \frac{2}{6} = \frac{1}{3} \] ### Step 4: Find the second derivative To determine whether this critical point is a maximum or minimum, we calculate the second derivative: \[ f''(x) = \frac{d}{dx}(2 - 6x) = -6 \] Since \( f''(x) = -6 \) is negative, this indicates that the function has a maximum at the critical point. ### Step 5: Calculate the maximum value Now we substitute \( x = \frac{1}{3} \) back into the original function to find the maximum value: \[ f\left(\frac{1}{3}\right) = 2\left(\frac{1}{3}\right) + 5 - 3\left(\frac{1}{3}\right)^2 \] Calculating this step-by-step: \[ = \frac{2}{3} + 5 - 3\left(\frac{1}{9}\right) \] \[ = \frac{2}{3} + 5 - \frac{1}{3} \] Combining the fractions: \[ = \left(\frac{2}{3} - \frac{1}{3}\right) + 5 = \frac{1}{3} + 5 = \frac{1}{3} + \frac{15}{3} = \frac{16}{3} \] ### Conclusion The maximum value of the function \( f(x) = 2x + 5 - 3x^2 \) is: \[ \frac{16}{3} \] at \( x = \frac{1}{3} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum or minimum values of the following expressions on R i) x^(2) + 6x – 27 ii) 3x^(2) + 2x + 7 iii) x^(2) - 12x + 32 iv) 2x^(2) + 3x + 1

Find the maximum or minimum values of the following expressions i) 2x -7 – 5x^(2) ii) 3x^(2)+2x+11 iii) ax^(2)+bx+a, a,b in R, a != 0 iv) x^(2)-x+7

Find the maximum or minimum values of the following functions: (i) x^(3)-2x^(2)+x+3

Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6

Find the maximum and minimum values of the function f(x)=tanx-2x .

Find the maximum and minimum values of the following functions. f(x)=2x^(3)-15x^(2)+36x+10

Find the maximum and minimum values of the following functions. f(x)=(x^(3))/(3)-(x^(2))/(2)-6x+8

Find the maximum and minimum values, if any, of the following functions given by (i) f" "(x)" "=" "|x" "+" "2" "|" "" "1 (ii) g(x)" "=" "" "|" "x" "+" "1|" "+" "3 (iii) h(x)" "=" "s in" "(2x)" "+" "5

Find the maximum and minimum values of each of the following trigonometrical expression: \ 5costheta+3sin(pi/6-theta)+4