Home
Class 12
MATHS
Solve ((x+1)(x-3))/((x-2)) ge 0....

Solve `((x+1)(x-3))/((x-2)) ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{(x+1)(x-3)}{(x-2)} \geq 0\), we will follow these steps: ### Step 1: Identify the critical points The critical points occur when the numerator or denominator is equal to zero. 1. Set the numerator equal to zero: \[ (x+1)(x-3) = 0 \] This gives us: - \(x + 1 = 0 \Rightarrow x = -1\) - \(x - 3 = 0 \Rightarrow x = 3\) 2. Set the denominator equal to zero: \[ x - 2 = 0 \Rightarrow x = 2 \] Thus, the critical points are \(x = -1\), \(x = 2\), and \(x = 3\). ### Step 2: Create a number line We will plot the critical points on a number line: \[ -\infty \quad -1 \quad 2 \quad 3 \quad +\infty \] ### Step 3: Test intervals We will test the sign of the expression in each of the intervals defined by the critical points: 1. **Interval \((- \infty, -1)\)**: Choose \(x = -2\) \[ \frac{(-2 + 1)(-2 - 3)}{-2 - 2} = \frac{(-1)(-5)}{-4} = \frac{5}{-4} < 0 \] 2. **Interval \((-1, 2)\)**: Choose \(x = 0\) \[ \frac{(0 + 1)(0 - 3)}{0 - 2} = \frac{(1)(-3)}{-2} = \frac{-3}{-2} > 0 \] 3. **Interval \((2, 3)\)**: Choose \(x = 2.5\) \[ \frac{(2.5 + 1)(2.5 - 3)}{2.5 - 2} = \frac{(3.5)(-0.5)}{0.5} = \frac{-1.75}{0.5} < 0 \] 4. **Interval \((3, +\infty)\)**: Choose \(x = 4\) \[ \frac{(4 + 1)(4 - 3)}{4 - 2} = \frac{(5)(1)}{2} > 0 \] ### Step 4: Determine the sign of the expression From our tests, we have: - For \(x < -1\): Negative - For \(-1 < x < 2\): Positive - For \(2 < x < 3\): Negative - For \(x > 3\): Positive ### Step 5: Include critical points Now we check the critical points: - At \(x = -1\): \[ \frac{(0)(-4)}{-3} = 0 \quad (\text{included since } \geq 0) \] - At \(x = 2\): The expression is undefined (denominator is zero). - At \(x = 3\): \[ \frac{(4)(0)}{1} = 0 \quad (\text{included since } \geq 0) \] ### Step 6: Write the solution The solution set where the expression is non-negative is: \[ x \in [-1, 2) \cup [3, +\infty) \] ### Final Answer \[ \text{The solution is } x \in [-1, 2) \cup [3, +\infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (2x+1)(x-3)(x+7)<0

solve f(x) = ((x-1)(2-x))/((x-3))ge 0.

Solve (2x+1)(x-3)(x+7)<0.

Solve : (|x|-1)/(|x|-2) ge 0, x ne pm 2

Solve : (|x|-1)/(|x|-2) ge 0, x ne pm 2

Solve (x-1)-3(x-1)+2=0

Solve (x^2-2x-3)/(x+1)=0.

Solve (x^2-2x-3)/(x+1)=0.

(4x)/(x^(2) +3)ge 1.

Solve (x+3)^(5)-(x-1)^(5)ge244 .