Home
Class 12
MATHS
Find the roots of the following quadrati...

Find the roots of the following quadratic equations
i) `6sqrt5 x^(2) – 9x -3sqrt5 = 0`
ii) `x^(2) - x - 12 = 0`
iii) `2x^(2) - 6x + 7 = 0`
iv) `4x^(2) - 4x+17 = 3x^(2) -10x-17`
v) `x^(2) + 6x + 34 = 0`
vi) `3x^(2) + 2x - 5 = 0`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve each of the quadratic equations step by step. ### i) \( 6\sqrt{5} x^{2} - 9x - 3\sqrt{5} = 0 \) 1. **Identify coefficients**: Here, \( a = 6\sqrt{5} \), \( b = -9 \), \( c = -3\sqrt{5} \). 2. **Use the quadratic formula**: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values: \[ x = \frac{-(-9) \pm \sqrt{(-9)^2 - 4 \cdot 6\sqrt{5} \cdot (-3\sqrt{5})}}{2 \cdot 6\sqrt{5}} \] 3. **Calculate \( b^2 - 4ac \)**: \[ x = \frac{9 \pm \sqrt{81 + 72 \cdot 5}}{12\sqrt{5}} \] \[ = \frac{9 \pm \sqrt{81 + 360}}{12\sqrt{5}} = \frac{9 \pm \sqrt{441}}{12\sqrt{5}} \] \[ = \frac{9 \pm 21}{12\sqrt{5}} \] 4. **Find the two roots**: \[ x_1 = \frac{30}{12\sqrt{5}} = \frac{5\sqrt{5}}{2}, \quad x_2 = \frac{-12}{12\sqrt{5}} = -\frac{\sqrt{5}}{5} \] ### ii) \( x^{2} - x - 12 = 0 \) 1. **Identify coefficients**: \( a = 1 \), \( b = -1 \), \( c = -12 \). 2. **Use the quadratic formula**: \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} \] 3. **Calculate \( b^2 - 4ac \)**: \[ x = \frac{1 \pm \sqrt{1 + 48}}{2} = \frac{1 \pm \sqrt{49}}{2} \] \[ = \frac{1 \pm 7}{2} \] 4. **Find the two roots**: \[ x_1 = \frac{8}{2} = 4, \quad x_2 = \frac{-6}{2} = -3 \] ### iii) \( 2x^{2} - 6x + 7 = 0 \) 1. **Identify coefficients**: \( a = 2 \), \( b = -6 \), \( c = 7 \). 2. **Use the quadratic formula**: \[ x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 2 \cdot 7}}{2 \cdot 2} \] 3. **Calculate \( b^2 - 4ac \)**: \[ x = \frac{6 \pm \sqrt{36 - 56}}{4} = \frac{6 \pm \sqrt{-20}}{4} = \frac{6 \pm 2i\sqrt{5}}{4} \] 4. **Find the two roots**: \[ x_1 = \frac{3}{2} + \frac{i\sqrt{5}}{2}, \quad x_2 = \frac{3}{2} - \frac{i\sqrt{5}}{2} \] ### iv) \( 4x^{2} - 4x + 17 = 3x^{2} - 10x - 17 \) 1. **Rearrange the equation**: \[ 4x^{2} - 4x + 17 - 3x^{2} + 10x + 17 = 0 \] \[ x^{2} + 6x + 34 = 0 \] 2. **Identify coefficients**: \( a = 1 \), \( b = 6 \), \( c = 34 \). 3. **Use the quadratic formula**: \[ x = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 34}}{2 \cdot 1} \] 4. **Calculate \( b^2 - 4ac \)**: \[ x = \frac{-6 \pm \sqrt{36 - 136}}{2} = \frac{-6 \pm \sqrt{-100}}{2} = \frac{-6 \pm 10i}{2} \] 5. **Find the two roots**: \[ x_1 = -3 + 5i, \quad x_2 = -3 - 5i \] ### v) \( x^{2} + 6x + 34 = 0 \) 1. **Identify coefficients**: \( a = 1 \), \( b = 6 \), \( c = 34 \). 2. **Use the quadratic formula**: \[ x = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 34}}{2 \cdot 1} \] 3. **Calculate \( b^2 - 4ac \)**: \[ x = \frac{-6 \pm \sqrt{36 - 136}}{2} = \frac{-6 \pm \sqrt{-100}}{2} = \frac{-6 \pm 10i}{2} \] 4. **Find the two roots**: \[ x_1 = -3 + 5i, \quad x_2 = -3 - 5i \] ### vi) \( 3x^{2} + 2x - 5 = 0 \) 1. **Identify coefficients**: \( a = 3 \), \( b = 2 \), \( c = -5 \). 2. **Use the quadratic formula**: \[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 3 \cdot (-5)}}{2 \cdot 3} \] 3. **Calculate \( b^2 - 4ac \)**: \[ x = \frac{-2 \pm \sqrt{4 + 60}}{6} = \frac{-2 \pm \sqrt{64}}{6} \] \[ = \frac{-2 \pm 8}{6} \] 4. **Find the two roots**: \[ x_1 = 1, \quad x_2 = -\frac{5}{3} \] ### Summary of Roots: 1. \( x_1 = \frac{5\sqrt{5}}{2}, x_2 = -\frac{\sqrt{5}}{5} \) 2. \( x_1 = 4, x_2 = -3 \) 3. \( x_1 = \frac{3}{2} + \frac{i\sqrt{5}}{2}, x_2 = \frac{3}{2} - \frac{i\sqrt{5}}{2} \) 4. \( x_1 = -3 + 5i, x_2 = -3 - 5i \) 5. \( x_1 = -3 + 5i, x_2 = -3 - 5i \) 6. \( x_1 = 1, x_2 = -\frac{5}{3} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the roots of the quadratic equation 6x^2-x-2=0 .

Find the roots of the quadratic equation 3x^2-2sqrt(6)x+2=0

Find the roots of the following quadratic equations by the factorisation method. 3x^(2)+5sqrt(5)x-10=0

Solve the following quadratic equations : (i) 9x^(2) - 8x+2=0 (ii) sqrt7 x^(2) +x+ sqrt7=0 (iii) 2sqrt3x^(2) -sqrt2 x + 3sqrt3 =0

The roots of the equation 6 sqrt(5) x^(2) - 9x - 3sqrt(5) = 0 is

Determine the nature of the roots of the following quadratic equations: (i) 2x^2-3x+5=0 (ii) 2x^2-6x+3=0 (iii) 3/5x^2-2/3x+1=0

Which of the following are quadratic equations? (i) x^2-6x+4=0 (ii) 2x^2-7x=0

Find the roots of the following quadratic equations by the method of completing the square : (i) x^(2)-10-24=0 (ii) 2x^(2)-7x-39=0 (iii) 5x^(2)+6x-8=0

Find the roots of the following quadratic equations by factorisation : (i) x^(2)-3x-10=0 (ii) 2x^(2)+x-6=0 (iii) sqrt2x^(2)+7x+5sqrt2=0 (iv) 2x^(2)-x+(1)/(8)=0 (v) 100x^(2)-20x+1=0 (vi) 2x^(2)+az-a^(2)=0

Discuss the nature of the following quadratic equations without finding the roots i) x^(2)-12x+32=0 ii) 2x^(2)-7x+10=0 iii) 4x^(2)-20x+25=0 iv) 3x^(2)+7x+2=0