Home
Class 12
MATHS
Form the quadratic equations whose roots...

Form the quadratic equations whose roots are given below
i) `7+-2sqrt5`
ii) `(a)/(b), (-b)/(a)` (`a!=0, b != 0`)
iii) `(p-q)/(p+q), -((p+q)/(p-q))` (`p != +-q`)
iv) `-3 +- 5i`
v) 2, 5 vi) `2+sqrt3, 2-sqrt3`
vii) -a+ib, -a-ib

Text Solution

AI Generated Solution

The correct Answer is:
To form the quadratic equations from the given roots, we will use the fact that if \( \alpha \) and \( \beta \) are the roots of a quadratic equation, then the equation can be expressed as: \[ x^2 - sx + p = 0 \] where \( s = \alpha + \beta \) (sum of the roots) and \( p = \alpha \cdot \beta \) (product of the roots). Now, let's solve each part step by step. ### Part i: Roots \( 7 \pm 2\sqrt{5} \) 1. **Identify the roots**: - \( \alpha = 7 + 2\sqrt{5} \) - \( \beta = 7 - 2\sqrt{5} \) 2. **Calculate the sum \( s \)**: \[ s = \alpha + \beta = (7 + 2\sqrt{5}) + (7 - 2\sqrt{5}) = 14 \] 3. **Calculate the product \( p \)**: \[ p = \alpha \cdot \beta = (7 + 2\sqrt{5})(7 - 2\sqrt{5}) = 7^2 - (2\sqrt{5})^2 = 49 - 20 = 29 \] 4. **Form the quadratic equation**: \[ x^2 - sx + p = 0 \implies x^2 - 14x + 29 = 0 \] ### Part ii: Roots \( \frac{a}{b}, -\frac{b}{a} \) 1. **Identify the roots**: - \( \alpha = \frac{a}{b} \) - \( \beta = -\frac{b}{a} \) 2. **Calculate the sum \( s \)**: \[ s = \alpha + \beta = \frac{a}{b} - \frac{b}{a} = \frac{a^2 - b^2}{ab} \] 3. **Calculate the product \( p \)**: \[ p = \alpha \cdot \beta = \frac{a}{b} \cdot \left(-\frac{b}{a}\right) = -1 \] 4. **Form the quadratic equation**: \[ x^2 - sx + p = 0 \implies x^2 - \left(\frac{a^2 - b^2}{ab}\right)x - 1 = 0 \] Multiplying through by \( ab \): \[ abx^2 - (a^2 - b^2)x - ab = 0 \] ### Part iii: Roots \( \frac{p-q}{p+q}, -\frac{p+q}{p-q} \) 1. **Identify the roots**: - \( \alpha = \frac{p-q}{p+q} \) - \( \beta = -\frac{p+q}{p-q} \) 2. **Calculate the sum \( s \)**: \[ s = \alpha + \beta = \frac{p-q}{p+q} - \frac{p+q}{p-q} \] Finding a common denominator: \[ s = \frac{(p-q)(p-q) - (p+q)(p+q)}{(p+q)(p-q)} = \frac{(p^2 - 2pq + q^2) - (p^2 + 2pq + q^2)}{p^2 - q^2} = \frac{-4pq}{p^2 - q^2} \] 3. **Calculate the product \( p \)**: \[ p = \alpha \cdot \beta = \frac{p-q}{p+q} \cdot \left(-\frac{p+q}{p-q}\right) = -1 \] 4. **Form the quadratic equation**: \[ x^2 - sx + p = 0 \implies x^2 + \frac{4pq}{p^2 - q^2}x + 1 = 0 \] Multiplying through by \( p^2 - q^2 \): \[ (p^2 - q^2)x^2 + 4pqx + (p^2 - q^2) = 0 \] ### Part iv: Roots \( -3 \pm 5i \) 1. **Identify the roots**: - \( \alpha = -3 + 5i \) - \( \beta = -3 - 5i \) 2. **Calculate the sum \( s \)**: \[ s = \alpha + \beta = (-3 + 5i) + (-3 - 5i) = -6 \] 3. **Calculate the product \( p \)**: \[ p = \alpha \cdot \beta = (-3 + 5i)(-3 - 5i) = (-3)^2 + (5)^2 = 9 + 25 = 34 \] 4. **Form the quadratic equation**: \[ x^2 - sx + p = 0 \implies x^2 + 6x + 34 = 0 \] ### Part v: Roots \( 2, 5 \) 1. **Identify the roots**: - \( \alpha = 2 \) - \( \beta = 5 \) 2. **Calculate the sum \( s \)**: \[ s = \alpha + \beta = 2 + 5 = 7 \] 3. **Calculate the product \( p \)**: \[ p = \alpha \cdot \beta = 2 \cdot 5 = 10 \] 4. **Form the quadratic equation**: \[ x^2 - sx + p = 0 \implies x^2 - 7x + 10 = 0 \] ### Part vi: Roots \( 2+\sqrt{3}, 2-\sqrt{3} \) 1. **Identify the roots**: - \( \alpha = 2 + \sqrt{3} \) - \( \beta = 2 - \sqrt{3} \) 2. **Calculate the sum \( s \)**: \[ s = \alpha + \beta = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4 \] 3. **Calculate the product \( p \)**: \[ p = \alpha \cdot \beta = (2+\sqrt{3})(2-\sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] 4. **Form the quadratic equation**: \[ x^2 - sx + p = 0 \implies x^2 - 4x + 1 = 0 \] ### Part vii: Roots \( -a + ib, -a - ib \) 1. **Identify the roots**: - \( \alpha = -a + ib \) - \( \beta = -a - ib \) 2. **Calculate the sum \( s \)**: \[ s = \alpha + \beta = (-a + ib) + (-a - ib) = -2a \] 3. **Calculate the product \( p \)**: \[ p = \alpha \cdot \beta = (-a + ib)(-a - ib) = a^2 + b^2 \] 4. **Form the quadratic equation**: \[ x^2 - sx + p = 0 \implies x^2 + 2ax + (a^2 + b^2) = 0 \] ### Summary of Quadratic Equations: 1. \( x^2 - 14x + 29 = 0 \) 2. \( abx^2 - (a^2 - b^2)x - ab = 0 \) 3. \( (p^2 - q^2)x^2 + 4pqx + (p^2 - q^2) = 0 \) 4. \( x^2 + 6x + 34 = 0 \) 5. \( x^2 - 7x + 10 = 0 \) 6. \( x^2 - 4x + 1 = 0 \) 7. \( x^2 + 2ax + (a^2 + b^2) = 0 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If P=2+sqrt3 , Q=2-sqrt3 , then P/Q=?

If the quadratic equation 2x^(2)+5x+1=0 has roots p and q,what is the value of the expression (2-p)(2-q)?

The roots of the equation (q-r)x^2+(r-p)x+p-q=0 are (A) (r-p)/(q-r),1 (B) (p-q)/(q-r),1 (C) (q-r)/(p-q),1 (D) (r-p)/(p-q),1

Find the product. (i) (5-2x)(3+x) (ii) (x+7y)(7x-y) (iii) (a^2+b)(a+b^2) (iv) (p^2-q^2)(2p+q)

If x^2+p x+q=0 is the quadratic equation whose roots are a-2a n d b-2 where aa n db are the roots of x^2-3x+1=0, then p-1,q=5 b. p=1,1=-5 c. p=-1,q=1 d. p=1,q=-1

If x^2+p x+q=0 is the quadratic equation whose roots are a-2a n d b-2 where aa n db are the roots of x^2-3x+1=0, then p-1,q=5 b. p=1,1=-5 c. p=-1,q=1 d. p=1,q=-1

If x^2+p x+q=0 is the quadratic equation whose roots are a-2a n d b-2 where aa n db are the roots of x^2-3x+1=0, then p-1,q=5 b. p=1,1=-5 c. p=-1,q=1 d. p=1,q=-1

If p,q,r in R and the quadratic equation px^2+qx+r=0 has no real roots, then (A) p(p+q+r)gt0 (B) (p+q+r)gt0 (C) q(p+q+r)gt0 (D) p+q+rgt0

The value of lim_(x to1)(p/(1-x^p)-q/(1-x^q)),p ,q , in N , equal (a) (p+q)/2 (b) (p q)/2 (c) (p-q)/2 (d) sqrt(p/q)

If the ratio of the roots of the equation lx^2+nx+n=0 is p:q prove that sqrt(p/q) +sqrt(q/p)+sqrt(n/l)=0