Home
Class 12
MATHS
For what values of x in R, the following...

For what values of `x in R`, the following expressions are negative
i) `-6x^(2)+2x -3` ii) `15+4x-3x^(2)` iii) `2x^(2)+5x -3` iv) `x^(2)-7x+10`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( x \in \mathbb{R} \) for which the given expressions are negative, we will analyze each expression one by one, finding the roots and determining the intervals where the expressions are negative. ### i) Expression: \(-6x^2 + 2x - 3\) 1. **Find the discriminant (D)**: \[ D = b^2 - 4ac = 2^2 - 4(-6)(-3) = 4 - 72 = -68 \] Since \( D < 0 \), there are no real roots. 2. **Conclusion**: The expression \(-6x^2 + 2x - 3\) is always negative for all \( x \in \mathbb{R} \). ### ii) Expression: \(15 + 4x - 3x^2\) 1. **Rearranging**: \[ -3x^2 + 4x + 15 \] 2. **Find the discriminant (D)**: \[ D = b^2 - 4ac = 4^2 - 4(-3)(15) = 16 + 180 = 196 \] Since \( D > 0 \), there are two real roots. 3. **Finding the roots**: \[ x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-4 \pm \sqrt{196}}{2(-3)} = \frac{-4 \pm 14}{-6} \] Roots: \[ x_1 = \frac{10}{-6} = -\frac{5}{3}, \quad x_2 = \frac{-18}{-6} = 3 \] 4. **Determine intervals**: The quadratic opens downwards (since the coefficient of \( x^2 \) is negative). The expression is negative between the roots: \[ -\frac{5}{3} < x < 3 \] ### iii) Expression: \(2x^2 + 5x - 3\) 1. **Find the discriminant (D)**: \[ D = b^2 - 4ac = 5^2 - 4(2)(-3) = 25 + 24 = 49 \] Since \( D > 0 \), there are two real roots. 2. **Finding the roots**: \[ x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-5 \pm 7}{4} \] Roots: \[ x_1 = \frac{2}{4} = \frac{1}{2}, \quad x_2 = \frac{-12}{4} = -3 \] 3. **Determine intervals**: The quadratic opens upwards (since the coefficient of \( x^2 \) is positive). The expression is negative between the roots: \[ -3 < x < \frac{1}{2} \] ### iv) Expression: \(x^2 - 7x + 10\) 1. **Find the discriminant (D)**: \[ D = b^2 - 4ac = (-7)^2 - 4(1)(10) = 49 - 40 = 9 \] Since \( D > 0 \), there are two real roots. 2. **Finding the roots**: \[ x = \frac{-b \pm \sqrt{D}}{2a} = \frac{7 \pm 3}{2} \] Roots: \[ x_1 = \frac{10}{2} = 5, \quad x_2 = \frac{4}{2} = 2 \] 3. **Determine intervals**: The quadratic opens upwards (since the coefficient of \( x^2 \) is positive). The expression is negative between the roots: \[ 2 < x < 5 \] ### Summary of Results 1. For \(-6x^2 + 2x - 3\): Always negative. 2. For \(15 + 4x - 3x^2\): \(-\frac{5}{3} < x < 3\). 3. For \(2x^2 + 5x - 3\): \(-3 < x < \frac{1}{2}\). 4. For \(x^2 - 7x + 10\): \(2 < x < 5\).
Promotional Banner

Similar Questions

Explore conceptually related problems

For what value of x in R the following expressions are negative i) x^(2) - 5x - 6 ii) -7x^(2) + 8x - 9

Find the maximum or minimum values of the following expressions on R i) x^(2) + 6x – 27 ii) 3x^(2) + 2x + 7 iii) x^(2) - 12x + 32 iv) 2x^(2) + 3x + 1

At what values of x in R the following quadratic expressions have maximum or minimum values i) x^(2)+5x+6 ii) 2x-x^(2)+7

Find the changes of sign of the following expressions and find extreme values i) 15+4x-3x^(2) ii) 4x-5x^(2)+2

Find the values of the following expressions for x=2. (i) x+4 (ii) 4x-3 (iii) 19-5x^2 (iv) 100-10x^3

Find the maximum or minimum values of the following expressions i) 2x -7 – 5x^(2) ii) 3x^(2)+2x+11 iii) ax^(2)+bx+a, a,b in R, a != 0 iv) x^(2)-x+7

Find the value of the following expressions, when x=-1 (i) 2x-7 (ii) -x+2 (iii) x^2+2x+1 (iv) 2x^2-x-2

Factorise (i) x^(2)+9x+18 (ii) 6x^(2)+7x-3 (iii) 2x^(2)-7x-15 (iv) 84-2r-2r^(2)

Find the value of the following expressions for x=2i) x+4 ii) 4x-3 iii) 19-5x^2 iv) 100-10x^3

Examine the nature of the roots of the equations (i) 2x^(2)+2x+3=0 (ii) 2x^(2)-7x+3=0 (iii) x^(2)_5x-2=0 (iv) 4x^(2)-4x+1=0