Home
Class 12
MATHS
Find the changes of sign of the followin...

Find the changes of sign of the following expressions and find extreme values
i) `15+4x-3x^(2)` ii) `4x-5x^(2)+2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the changes of sign and extreme values for the given quadratic expressions, we will follow these steps: ### i) For the expression \(15 + 4x - 3x^2\) 1. **Identify coefficients**: We rewrite the expression in standard form \(ax^2 + bx + c\): \[ -3x^2 + 4x + 15 \] Here, \(a = -3\), \(b = 4\), and \(c = 15\). 2. **Calculate the discriminant**: The discriminant \(\Delta\) is given by \(b^2 - 4ac\): \[ \Delta = 4^2 - 4 \cdot (-3) \cdot 15 = 16 + 180 = 196 \] Since \(\Delta > 0\), the quadratic has two distinct real roots. 3. **Finding the roots**: We use the quadratic formula: \[ x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-4 \pm \sqrt{196}}{2 \cdot -3} = \frac{-4 \pm 14}{-6} \] This gives us two roots: \[ x_1 = \frac{10}{-6} = -\frac{5}{3}, \quad x_2 = \frac{-18}{-6} = 3 \] 4. **Determine the intervals**: The roots divide the number line into intervals: - \( (-\infty, -\frac{5}{3}) \) - \( (-\frac{5}{3}, 3) \) - \( (3, \infty) \) 5. **Test the sign in each interval**: - For \(x < -\frac{5}{3}\), choose \(x = -2\): \[ 15 + 4(-2) - 3(-2)^2 = 15 - 8 - 12 = -5 \quad (\text{negative}) \] - For \(-\frac{5}{3} < x < 3\), choose \(x = 0\): \[ 15 + 4(0) - 3(0)^2 = 15 \quad (\text{positive}) \] - For \(x > 3\), choose \(x = 4\): \[ 15 + 4(4) - 3(4)^2 = 15 + 16 - 48 = -17 \quad (\text{negative}) \] 6. **Conclusion on sign changes**: The expression changes sign at \(x = -\frac{5}{3}\) and \(x = 3\). It is negative in the intervals \((- \infty, -\frac{5}{3})\) and \((3, \infty)\), and positive in \((- \frac{5}{3}, 3)\). 7. **Finding the extreme value**: Since \(a < 0\), the quadratic opens downwards, indicating a maximum at the vertex: \[ x = -\frac{b}{2a} = -\frac{4}{2 \cdot -3} = \frac{2}{3} \] Substitute \(x = \frac{2}{3}\) back into the expression to find the maximum value: \[ 15 + 4\left(\frac{2}{3}\right) - 3\left(\frac{2}{3}\right)^2 = 15 + \frac{8}{3} - 3\left(\frac{4}{9}\right) = 15 + \frac{8}{3} - \frac{4}{3} = 15 + \frac{4}{3} = \frac{45}{3} + \frac{4}{3} = \frac{49}{3} \] ### ii) For the expression \(4x - 5x^2 + 2\) 1. **Identify coefficients**: Rewrite in standard form: \[ -5x^2 + 4x + 2 \] Here, \(a = -5\), \(b = 4\), and \(c = 2\). 2. **Calculate the discriminant**: \[ \Delta = 4^2 - 4 \cdot (-5) \cdot 2 = 16 + 40 = 56 \] Since \(\Delta > 0\), there are two distinct real roots. 3. **Finding the roots**: Using the quadratic formula: \[ x = \frac{-4 \pm \sqrt{56}}{2 \cdot -5} = \frac{-4 \pm 2\sqrt{14}}{-10} = \frac{2 \pm \sqrt{14}}{5} \] Let \(x_1 = \frac{2 - \sqrt{14}}{5}\) and \(x_2 = \frac{2 + \sqrt{14}}{5}\). 4. **Determine the intervals**: The roots divide the number line into intervals: - \( (-\infty, x_1) \) - \( (x_1, x_2) \) - \( (x_2, \infty) \) 5. **Test the sign in each interval**: - For \(x < x_1\), choose \(x = 0\): \[ 2 \quad (\text{positive}) \] - For \(x_1 < x < x_2\), choose \(x = 1\): \[ 4 - 5 + 2 = 1 \quad (\text{positive}) \] - For \(x > x_2\), choose \(x = 2\): \[ 8 - 20 + 2 = -10 \quad (\text{negative}) \] 6. **Conclusion on sign changes**: The expression changes sign at \(x = x_1\) and \(x = x_2\). It is positive in the intervals \((- \infty, x_1)\) and \((x_1, x_2)\), and negative in \((x_2, \infty)\). 7. **Finding the extreme value**: Since \(a < 0\), the quadratic opens downwards, indicating a maximum at the vertex: \[ x = -\frac{b}{2a} = -\frac{4}{2 \cdot -5} = \frac{2}{5} \] Substitute \(x = \frac{2}{5}\) back into the expression to find the maximum value: \[ 4\left(\frac{2}{5}\right) - 5\left(\frac{2}{5}\right)^2 + 2 = \frac{8}{5} - 5\left(\frac{4}{25}\right) + 2 = \frac{8}{5} - \frac{20}{25} + 2 = \frac{8}{5} - \frac{4}{5} + \frac{10}{5} = \frac{14}{5} \] ### Summary of Results: - For \(15 + 4x - 3x^2\): - Changes of sign: at \(x = -\frac{5}{3}\) and \(x = 3\). - Maximum value: \(\frac{49}{3}\). - For \(4x - 5x^2 + 2\): - Changes of sign: at \(x = \frac{2 - \sqrt{14}}{5}\) and \(x = \frac{2 + \sqrt{14}}{5}\). - Maximum value: \(\frac{14}{5}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the sign of the following expressions when x is real i) x^(2)-5x+6 ii) x^(2)-x+3

For what values of x in R , the following expressions are negative i) -6x^(2)+2x -3 ii) 15+4x-3x^(2) iii) 2x^(2)+5x -3 iv) x^(2)-7x+10

Find the cube of each of the following binomial expressions: (i) 2x+3/x (ii) 4-1/(3x)\

Find the values of the following expressions for x=2. (i) x+4 (ii) 4x-3 (iii) 19-5x^2 (iv) 100-10x^3

Find the value of the following expressions for x=2i) x+4 ii) 4x-3 iii) 19-5x^2 iv) 100-10x^3

Find the maximum or minimum values of the following expressions i) 2x -7 – 5x^(2) ii) 3x^(2)+2x+11 iii) ax^(2)+bx+a, a,b in R, a != 0 iv) x^(2)-x+7

Find the values of k for which roots of the following equations are real and equal: (i) 12x^(2)+4kx+3=0 (ii) kx^(2)-5x+k=0 (iii) x^(2)+k(4x+k-1)+2=0

Find the values of x for which the following functions are maximum or minimum: (i) x^(3)- 3x^(2) - 9x (ii) 4x^(3)-15x^(2)+12x+1

Find the value of each of the following algebraic expressions. 3x - 4y + 9, if x = 5 and y = -2

Find the value of 'p'. If the following quadratic equations have equal roots : (i) 4x^(2)-(p-2)x+1=0 (ii) x^(2)+(p-3)x+p=0