Home
Class 12
MATHS
Find the maximum or minimum values of th...

Find the maximum or minimum values of the following expressions
i) `2x -7 – 5x^(2)` ii) `3x^(2)+2x+11` iii) `ax^(2)+bx+a, a,b in R, a != 0` iv) `x^(2)-x+7`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given expressions step by step to find their maximum or minimum values. ### i) Expression: \( f(x) = 2x - 7 - 5x^2 \) 1. **Find the first derivative**: \[ f'(x) = \frac{d}{dx}(2x - 7 - 5x^2) = 2 - 10x \] 2. **Set the first derivative to zero**: \[ 2 - 10x = 0 \implies 10x = 2 \implies x = \frac{1}{5} \] 3. **Find the second derivative**: \[ f''(x) = \frac{d^2}{dx^2}(2x - 7 - 5x^2) = -10 \] Since \( f''(x) < 0 \), this indicates a maximum. 4. **Calculate the maximum value by substituting \( x = \frac{1}{5} \) back into the original function**: \[ f\left(\frac{1}{5}\right) = 2\left(\frac{1}{5}\right) - 7 - 5\left(\frac{1}{5}\right)^2 \] \[ = \frac{2}{5} - 7 - 5 \cdot \frac{1}{25} \] \[ = \frac{2}{5} - 7 - \frac{1}{5} = \frac{2 - 35 - 1}{5} = \frac{-34}{5} \] **Maximum value**: \( -\frac{34}{5} \) ### ii) Expression: \( f(x) = 3x^2 + 2x + 11 \) 1. **Find the first derivative**: \[ f'(x) = \frac{d}{dx}(3x^2 + 2x + 11) = 6x + 2 \] 2. **Set the first derivative to zero**: \[ 6x + 2 = 0 \implies 6x = -2 \implies x = -\frac{1}{3} \] 3. **Find the second derivative**: \[ f''(x) = \frac{d^2}{dx^2}(3x^2 + 2x + 11) = 6 \] Since \( f''(x) > 0 \), this indicates a minimum. 4. **Calculate the minimum value by substituting \( x = -\frac{1}{3} \) back into the original function**: \[ f\left(-\frac{1}{3}\right) = 3\left(-\frac{1}{3}\right)^2 + 2\left(-\frac{1}{3}\right) + 11 \] \[ = 3 \cdot \frac{1}{9} - \frac{2}{3} + 11 = \frac{1}{3} - \frac{2}{3} + 11 = -\frac{1}{3} + 11 = \frac{32}{3} \] **Minimum value**: \( \frac{32}{3} \) ### iii) Expression: \( f(x) = ax^2 + bx + a \) (where \( a, b \in \mathbb{R}, a \neq 0 \)) 1. **Find the first derivative**: \[ f'(x) = 2ax + b \] 2. **Set the first derivative to zero**: \[ 2ax + b = 0 \implies x = -\frac{b}{2a} \] 3. **Find the second derivative**: \[ f''(x) = 2a \] - If \( a > 0 \), then \( f''(x) > 0 \) (minimum). - If \( a < 0 \), then \( f''(x) < 0 \) (maximum). 4. **Calculate the extrema value**: \[ f\left(-\frac{b}{2a}\right) = a\left(-\frac{b}{2a}\right)^2 + b\left(-\frac{b}{2a}\right) + a \] \[ = a\frac{b^2}{4a^2} - \frac{b^2}{2a} + a = \frac{b^2}{4a} - \frac{2b^2}{4a} + a = a - \frac{b^2}{4a} \] - If \( a > 0 \): Minimum value is \( a - \frac{b^2}{4a} \). - If \( a < 0 \): Maximum value is \( a - \frac{b^2}{4a} \). ### iv) Expression: \( f(x) = x^2 - x + 7 \) 1. **Find the first derivative**: \[ f'(x) = 2x - 1 \] 2. **Set the first derivative to zero**: \[ 2x - 1 = 0 \implies x = \frac{1}{2} \] 3. **Find the second derivative**: \[ f''(x) = 2 \] Since \( f''(x) > 0 \), this indicates a minimum. 4. **Calculate the minimum value by substituting \( x = \frac{1}{2} \) back into the original function**: \[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right) + 7 \] \[ = \frac{1}{4} - \frac{1}{2} + 7 = \frac{1}{4} - \frac{2}{4} + 7 = -\frac{1}{4} + 7 = \frac{27}{4} \] **Minimum value**: \( \frac{27}{4} \) ### Summary of Results: - i) Maximum value: \( -\frac{34}{5} \) - ii) Minimum value: \( \frac{32}{3} \) - iii) Minimum/Maximum value: \( a - \frac{b^2}{4a} \) (depends on the sign of \( a \)) - iv) Minimum value: \( \frac{27}{4} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum or minimum values of the following expressions on R 2x + 5 – 3x^(2)

Find the maximum or minimum values of the following functions: (i) x^(3)-2x^(2)+x+3

Find the maximum or minimum values of the following expressions on R i) x^(2) + 6x – 27 ii) 3x^(2) + 2x + 7 iii) x^(2) - 12x + 32 iv) 2x^(2) + 3x + 1

Find the value of the following expressions, when x=-1 (i) 2x-7 (ii) -x+2 (iii) x^2+2x+1 (iv) 2x^2-x-2

Find the value of the following expressions for x=2i) x+4 ii) 4x-3 iii) 19-5x^2 iv) 100-10x^3

Find the values of the following expressions for x=2. (i) x+4 (ii) 4x-3 (iii) 19-5x^2 (iv) 100-10x^3

For what values of x in R , the following expressions are negative i) -6x^(2)+2x -3 ii) 15+4x-3x^(2) iii) 2x^(2)+5x -3 iv) x^(2)-7x+10

For what value of x in R the following expressions are negative i) x^(2) - 5x - 6 ii) -7x^(2) + 8x - 9

The minimum value of the expression 2 ^(x) + 2 ^(2x +1) + (5)/(2 ^(x)) ,x in R is :

If x=1 and y=2, find the values of each of the following algebraic expressions: (i) 3x+2y-7 (ii) x^2