Home
Class 12
MATHS
If (x - p)/(x^(2) - 3x + 2) takes all ...

If `(x - p)/(x^(2) - 3x + 2)` takes all real values for ` x in R` then the range of P is

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of \( p \) such that the expression \( \frac{x - p}{x^2 - 3x + 2} \) takes all real values for \( x \in \mathbb{R} \), we will follow these steps: ### Step 1: Define the expression Let: \[ y = \frac{x - p}{x^2 - 3x + 2} \] ### Step 2: Rearrange the equation Rearranging gives us: \[ y(x^2 - 3x + 2) = x - p \] This can be rewritten as: \[ yx^2 - 3yx + 2y - x + p = 0 \] or: \[ yx^2 + (-3y - 1)x + (2y + p) = 0 \] ### Step 3: Identify coefficients In this quadratic equation in \( x \), the coefficients are: - \( A = y \) - \( B = -3y - 1 \) - \( C = 2y + p \) ### Step 4: Apply the condition for real roots For \( x \) to take all real values, the discriminant \( D \) of this quadratic must be non-negative: \[ D = B^2 - 4AC \geq 0 \] Substituting the coefficients: \[ (-3y - 1)^2 - 4y(2y + p) \geq 0 \] ### Step 5: Expand and simplify the discriminant Expanding the discriminant: \[ (9y^2 + 6y + 1) - (8y^2 + 4py) \geq 0 \] This simplifies to: \[ y^2 + (6 - 4p)y + 1 \geq 0 \] ### Step 6: Analyze the quadratic inequality For the quadratic \( y^2 + (6 - 4p)y + 1 \geq 0 \) to hold for all \( y \), its discriminant must be less than or equal to zero: \[ (6 - 4p)^2 - 4 \cdot 1 \cdot 1 \leq 0 \] ### Step 7: Solve the discriminant inequality Calculating the discriminant: \[ (6 - 4p)^2 - 4 \leq 0 \] This simplifies to: \[ (6 - 4p)^2 \leq 4 \] Taking square roots gives: \[ |6 - 4p| \leq 2 \] This leads to two inequalities: 1. \( 6 - 4p \leq 2 \) 2. \( 6 - 4p \geq -2 \) ### Step 8: Solve the inequalities 1. From \( 6 - 4p \leq 2 \): \[ -4p \leq -4 \implies p \geq 1 \] 2. From \( 6 - 4p \geq -2 \): \[ -4p \geq -8 \implies p \leq 2 \] ### Conclusion: Determine the range of \( p \) Combining both results, we find: \[ 1 \leq p \leq 2 \] Thus, the range of \( p \) is: \[ \boxed{[1, 2]} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^2+a x+3)/(x^2+x+a) takes all real values for possible real values of x , then a. a^3-9a+12 =0 c. ageq1/4 d. a<1/4

If f(x)=(p^2-1)/(p^2+1) x^3-3x + log 2 is a decreasing function of x.in, R then the set of possible values of p (independent of x) is

If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if

If x is real, the expression (x+2)/(2x^2 + 3x+6) takes all value in the interval

If the expression x^(2)-(m+2)x+4 is always positive for all real values of x, then find range of m

If x is real, then range of (3x -2)/(7x+5) is :

Let P(x) be quadratic polynomical with real coefficient such tht for all real x(1) the relation 2(1 + P(x)) = P(x - 1) + P(x + 1) holds. If P(0) = 8 and P(2) = 32 then If the range of P(x) is [m, oo) then 'm' is less then

If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2| , then the set of all real values of x is

If the quadratic polynomial P (x)=(p-3)x ^(2) -2px+3p-6 ranges from [0,oo) for every x in R, then the value of p can be: