Home
Class 12
MATHS
sqrt((3x)/(x+1))+sqrt((x+1)/(3x))=2," wh...

`sqrt((3x)/(x+1))+sqrt((x+1)/(3x))=2," when "x ne 0and x ne -1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\sqrt{\frac{3x}{x+1}} + \sqrt{\frac{x+1}{3x}} = 2\), we will follow these steps: ### Step 1: Square both sides We start by squaring both sides of the equation to eliminate the square roots: \[ \left(\sqrt{\frac{3x}{x+1}} + \sqrt{\frac{x+1}{3x}}\right)^2 = 2^2 \] This simplifies to: \[ \frac{3x}{x+1} + 2\sqrt{\frac{3x}{x+1} \cdot \frac{x+1}{3x}} + \frac{x+1}{3x} = 4 \] ### Step 2: Simplify the middle term The middle term simplifies as follows: \[ 2\sqrt{\frac{3x}{x+1} \cdot \frac{x+1}{3x}} = 2\sqrt{1} = 2 \] Thus, our equation now reads: \[ \frac{3x}{x+1} + 2 + \frac{x+1}{3x} = 4 \] ### Step 3: Rearranging the equation Now, we can rearrange the equation: \[ \frac{3x}{x+1} + \frac{x+1}{3x} = 4 - 2 \] This simplifies to: \[ \frac{3x}{x+1} + \frac{x+1}{3x} = 2 \] ### Step 4: Find a common denominator The common denominator for the left-hand side is \(3x(x+1)\): \[ \frac{3x \cdot 3x + (x+1)(x+1)}{3x(x+1)} = 2 \] This leads to: \[ \frac{9x^2 + (x^2 + 2x + 1)}{3x(x+1)} = 2 \] Combining the terms in the numerator gives: \[ \frac{10x^2 + 2x + 1}{3x(x+1)} = 2 \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 10x^2 + 2x + 1 = 6x(x+1) \] Expanding the right side results in: \[ 10x^2 + 2x + 1 = 6x^2 + 6x \] ### Step 6: Rearranging to form a quadratic equation Rearranging terms leads to: \[ 10x^2 - 6x^2 + 2x - 6x + 1 = 0 \] This simplifies to: \[ 4x^2 - 4x + 1 = 0 \] ### Step 7: Solve the quadratic equation Now we can apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 4\), \(b = -4\), and \(c = 1\): \[ x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} \] This simplifies to: \[ x = \frac{4 \pm \sqrt{16 - 16}}{8} = \frac{4 \pm 0}{8} = \frac{4}{8} = \frac{1}{2} \] ### Step 8: Verify the solution We check if \(x = \frac{1}{2}\) satisfies the original equation: \[ \sqrt{\frac{3 \cdot \frac{1}{2}}{\frac{1}{2}+1}} + \sqrt{\frac{\frac{1}{2}+1}{3 \cdot \frac{1}{2}}} = \sqrt{\frac{\frac{3}{2}}{\frac{3}{2}}} + \sqrt{\frac{\frac{3}{2}}{\frac{3}{2}}} = 1 + 1 = 2 \] Thus, the solution \(x = \frac{1}{2}\) is valid. ### Final Answer The solution to the equation is: \[ x = \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : sqrt((x)/(1-x))+sqrt((1-x)/(x))=2(1)/(6), x ne 0 "and" x ne 1 .

If m and n are roots of the equation : (1)/(x)-(1)/(x-2)=3 , where x ne 0 and x ne 2 , find mxxn .

The solution set of (x+(1)/(x) ) ^2 -3/2 (x-(1)/(x)) =4 when x ne 0 is

intdx/((1+x)sqrt(3x^2+3x+1))

Solve for x : 4(x-(1)/(x))^(2)+8(x+(1)/(x))=29 . x ne 0 .

Solve the following equation: (2x)/(x-3)+(1)/(2x+3)+(3x+9)/((x-3)(2x+3))=0 , x ne 3, x ne -(3)/(2)

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x , when x ne 0 .

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

f(x)=sqrt(log((3x-x^(2))/(x-1)))