Home
Class 12
MATHS
Solve the following equations : 2(x^(2...

Solve the following equations :
`2(x^(2)+(1)/(x^(2)))-3(x+(1)/(x))=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\left(x^2 + \frac{1}{x^2}\right) - 3\left(x + \frac{1}{x}\right) = 1 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 2\left(x^2 + \frac{1}{x^2}\right) - 3\left(x + \frac{1}{x}\right) = 1 \] We can express \( x^2 + \frac{1}{x^2} \) in terms of \( x + \frac{1}{x} \). Recall that: \[ x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 \] Let \( y = x + \frac{1}{x} \). Then, we can rewrite \( x^2 + \frac{1}{x^2} \) as: \[ x^2 + \frac{1}{x^2} = y^2 - 2 \] Substituting this back into the equation gives: \[ 2(y^2 - 2) - 3y = 1 \] ### Step 2: Simplify the equation Now, simplify the equation: \[ 2y^2 - 4 - 3y = 1 \] Adding 4 to both sides: \[ 2y^2 - 3y - 5 = 0 \] ### Step 3: Solve the quadratic equation Now we need to solve the quadratic equation \( 2y^2 - 3y - 5 = 0 \). We can use the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2 \), \( b = -3 \), and \( c = -5 \). Plugging in these values: \[ y = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot (-5)}}{2 \cdot 2} \] \[ y = \frac{3 \pm \sqrt{9 + 40}}{4} \] \[ y = \frac{3 \pm \sqrt{49}}{4} \] \[ y = \frac{3 \pm 7}{4} \] ### Step 4: Find the values of \( y \) Calculating the two possible values for \( y \): 1. \( y = \frac{10}{4} = \frac{5}{2} \) 2. \( y = \frac{-4}{4} = -1 \) ### Step 5: Solve for \( x \) Now we will solve for \( x \) using \( y = x + \frac{1}{x} \). **Case 1:** \( y = \frac{5}{2} \) \[ x + \frac{1}{x} = \frac{5}{2} \] Multiplying through by \( 2x \): \[ 2x^2 - 5x + 2 = 0 \] Using the quadratic formula: \[ x = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot 2}}{2 \cdot 2} \] \[ x = \frac{5 \pm \sqrt{25 - 16}}{4} \] \[ x = \frac{5 \pm 3}{4} \] This gives: 1. \( x = \frac{8}{4} = 2 \) 2. \( x = \frac{2}{4} = \frac{1}{2} \) **Case 2:** \( y = -1 \) \[ x + \frac{1}{x} = -1 \] Multiplying through by \( x \): \[ x^2 + x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ x = \frac{-1 \pm \sqrt{-3}}{2} \] \[ x = \frac{-1 \pm i\sqrt{3}}{2} \] ### Final Solutions Thus, the solutions for \( x \) are: 1. \( x = 2 \) 2. \( x = \frac{1}{2} \) 3. \( x = \frac{-1 + i\sqrt{3}}{2} \) 4. \( x = \frac{-1 - i\sqrt{3}}{2} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve each of the following equations : (x^(2)+(1)/(x^(2)))-3(x-(1)/(x))-2=0

Solve equation : 2(x^(2)+(1)/(x^(2)))-(x+(1)/(x))=11

Solve the following equations : (x)/(3)-2(1)/(2)=(4x)/(9)-(2x)/(3)

Solve the following equation : (x^(2)-3.5 x + 1.5)/(x^(2)-x-6)=0

Solve the following equation: (|x-2|)/(x-3)=1/(x-3)

Solve the following equations : 2((x)/(x+1))^(2)-5((x)/(x+1))+2=0\ xne-1

Solve the following equations : (x-1)(x+6)-(x-2)(x-3)=3

Solve the following equation : 2((2x-1)/(x+3))-3((x+3)/(2x-1))=5,(xne-3,1)

Solve the following equations : (1)/(x-1)-(1)/(x)=(1)/(x+3)-(1)/(x+4)

Solve the following equations : (1)/(x-1)+(2)/(x-2)=(3)/(x-3)