Home
Class 12
MATHS
IF m,n,K are rational and m=k +(n)/(...

IF m,n,K are rational and `m=k +(n)/(k) ` then the roots of ` x^2 +mx +n =0` are

A

k, `(n)/(k)`

B

k, `(-n)/(k)`

C

-k, `(-n)/(k)`

D

-k, `(n)/(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the roots of the quadratic equation \( x^2 + mx + n = 0 \) given that \( m = k + \frac{n}{k} \), where \( m, n, k \) are rational numbers. ### Step-by-step Solution: 1. **Substitute \( m \) into the equation**: We start with the equation: \[ x^2 + mx + n = 0 \] Substituting \( m = k + \frac{n}{k} \): \[ x^2 + \left(k + \frac{n}{k}\right)x + n = 0 \] 2. **Identify coefficients**: Here, we identify the coefficients: - \( a = 1 \) - \( b = k + \frac{n}{k} \) - \( c = n \) 3. **Use the quadratic formula**: The roots of the quadratic equation are given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \( a \), \( b \), and \( c \): \[ x = \frac{-(k + \frac{n}{k}) \pm \sqrt{\left(k + \frac{n}{k}\right)^2 - 4 \cdot 1 \cdot n}}{2 \cdot 1} \] 4. **Simplify the expression**: First, simplify the expression for \( b^2 - 4ac \): \[ b^2 = \left(k + \frac{n}{k}\right)^2 = k^2 + 2n + \frac{n^2}{k^2} \] Then calculate \( 4ac \): \[ 4ac = 4n \] Thus, we have: \[ b^2 - 4ac = k^2 + 2n + \frac{n^2}{k^2} - 4n = k^2 + \frac{n^2}{k^2} - 2n \] 5. **Substitute back into the quadratic formula**: Now substituting back into the formula for \( x \): \[ x = \frac{-(k + \frac{n}{k}) \pm \sqrt{k^2 + \frac{n^2}{k^2} - 2n}}{2} \] 6. **Factor the square root**: Notice that: \[ k^2 + \frac{n^2}{k^2} - 2n = \left(k - \frac{n}{k}\right)^2 \] Therefore, we can write: \[ x = \frac{-(k + \frac{n}{k}) \pm \left(k - \frac{n}{k}\right)}{2} \] 7. **Calculate the two roots**: - For the addition: \[ x_1 = \frac{-k - \frac{n}{k} + k - \frac{n}{k}}{2} = \frac{-2\frac{n}{k}}{2} = -\frac{n}{k} \] - For the subtraction: \[ x_2 = \frac{-k - \frac{n}{k} - (k - \frac{n}{k})}{2} = \frac{-2k}{2} = -k \] 8. **Final roots**: Thus, the roots of the quadratic equation \( x^2 + mx + n = 0 \) are: \[ x = -\frac{n}{k} \quad \text{and} \quad x = -k \]
Promotional Banner

Similar Questions

Explore conceptually related problems

In X-Y plane, the path defined by the equation (1)/(x^(m))+(1)/(y^(m)) +(k)/((x+y)^(n)) =0 , is (a) a parabola if m = (1)/(2), k =- 1, n =0 (b) a hyperbola if m =1, k =- 1, n=0 (c) a pair of lines if m = k = n =1 (d) a pair of lines if m = k =- 1, n =1

Number of non-negative integral values of 'k' for which roots of the equation x^(2)+6x+k=0 are rational is-

The integral value of m for which the root of the equation m x^2+(2m-1)x+(m-2)=0 are rational are given by the expression [where n is integer] (A) n^2 (B) n(n+2) (C) n(n+1) (D) none of these

Evaluate int_(0)^(1)(tx+1-x)^(n)dx , where n is a positive integer and t is a parameter independent of x . Hence , show that ∫ 0 1 ​ x k (1−x) n−k dx= [ n C k ​ (n+1)] P ​ fork=0,1,......n, then P=

If f(x) = sum_(k=2)^(n) (x-(1)/(k-1))(x-(1)/(k)) , then the product of root of f(x) = 0 as n rarr oo , is

If x=2 and x=3 are roots of the equation 3x^(2)-mx+2n=0 , then find the values of m and m.

The quadratic equation x^2+m x+n=0 has roots which are twice those of x^2+p x+m=0a dm ,na n dp!=0. The n the value of n//p is _____.

Let m and n be positive integers and x,y gt 0 and x+y =k, where k is constant. Let f (x,y) = x ^(m)y ^(n), then: (a) f (x,y) is maximum when x= (mk)/(m+n) (b) f (x,y) is maximuim where x =y (c) maximum value of f (x,y) is (m^(n)n ^(m) k ^(m+n))/((m+n)^(m+n)) (d) maximum value of f (x,y) is (k ^(m+n) m ^(m)n ^(n))/((m+n)^(m+n))

If a, x_1, x_2, …, x_k and b, y_1, y_2, …, y_k from two A. Ps with common differences m and n respectively, the the locus of point (x, y) , where x= (sum_(i=1)^k x_i)/k and y= (sum_(i=1)^k yi)/k is: (A) (x-a) m = (y-b)n (B) (x-m) a= (y-n) b (C) (x-n) a= (y-m) b (D) (x-a) n= (y-b)m