Home
Class 12
MATHS
If alpha , beta are the roots of x^2...

If `alpha , beta` are the roots of ` x^2-p(x+1)+c=0` then `(1+alpha )( 1+ beta )=`

A

1+ c

B

1-c

C

p + c

D

p-c

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (1 + \alpha)(1 + \beta) \) given that \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 - p(x + 1) + c = 0 \). ### Step-by-step Solution: 1. **Identify the Coefficients**: The given quadratic equation can be rewritten as: \[ x^2 - p \cdot x - p + c = 0 \] From this, we can identify the coefficients: - Coefficient of \( x^2 \) is \( 1 \) - Coefficient of \( x \) is \( -p \) - Constant term is \( c - p \) 2. **Use Vieta's Formulas**: According to Vieta's formulas, for a quadratic equation \( ax^2 + bx + c = 0 \): - The sum of the roots \( \alpha + \beta = -\frac{b}{a} \) - The product of the roots \( \alpha \beta = \frac{c}{a} \) Applying this to our equation: - \( \alpha + \beta = p \) - \( \alpha \beta = c - p \) 3. **Expand \( (1 + \alpha)(1 + \beta) \)**: We can expand the expression: \[ (1 + \alpha)(1 + \beta) = 1 + \alpha + \beta + \alpha \beta \] 4. **Substitute the Values**: Now, substitute the values we found using Vieta's formulas: - \( \alpha + \beta = p \) - \( \alpha \beta = c - p \) Thus, we have: \[ (1 + \alpha)(1 + \beta) = 1 + p + (c - p) \] 5. **Simplify the Expression**: Now, simplify the expression: \[ 1 + p + c - p = 1 + c \] 6. **Final Result**: Therefore, we conclude that: \[ (1 + \alpha)(1 + \beta) = c + 1 \] ### Answer: The value of \( (1 + \alpha)(1 + \beta) \) is \( c + 1 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta are the roots of ax^2+bx +c=0 then (1+ alpha + alpha ^2)(1+ beta + beta ^2) is

If alpha,beta are the roots of the equation x^2-p(x+1)-c=0 then (alpha+1)(beta+1)= a) c b) c-1 c) 1-c d) none of these

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha, beta are the roots of x^(2)+x+1=0 , then alpha^(-2)+beta^(-2) is

If alpha and beta are the roots of x^2 - p (x+1) - c = 0 , then the value of (alpha^2 + 2alpha+1)/(alpha^2 +2 alpha + c) + (beta^2 + 2beta + 1)/(beta^2 + 2beta + c)

If alpha and beta are the roots of x^2 - p (x+1) - c = 0 , then the value of (alpha^2 + 2alpha+1)/(alpha^2 +2 alpha + c) + (beta^2 + 2beta + 1)/(beta^2 + 2beta + c)

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is