Home
Class 12
MATHS
If alpha, beta are the roots of x^(2) - ...

If `alpha, beta` are the roots of `x^(2) - x + 3 = 0`, then `alpha^(4) +beta^(4)` =

A

10

B

7

C

-10

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve for \( \alpha^4 + \beta^4 \) given that \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 - x + 3 = 0 \), we can follow these steps: ### Step 1: Identify coefficients The given quadratic equation is: \[ x^2 - x + 3 = 0 \] Here, we can identify: - \( a = 1 \) - \( b = -1 \) - \( c = 3 \) ### Step 2: Find \( \alpha + \beta \) and \( \alpha \beta \) Using Vieta's formulas: \[ \alpha + \beta = -\frac{b}{a} = -\frac{-1}{1} = 1 \] \[ \alpha \beta = \frac{c}{a} = \frac{3}{1} = 3 \] ### Step 3: Find \( \alpha^2 + \beta^2 \) We can use the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values we found: \[ \alpha^2 + \beta^2 = (1)^2 - 2(3) = 1 - 6 = -5 \] ### Step 4: Find \( \alpha^4 + \beta^4 \) We can use the identity: \[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha^2 \beta^2) \] First, we need to find \( \alpha^2 \beta^2 \): \[ \alpha^2 \beta^2 = (\alpha \beta)^2 = (3)^2 = 9 \] Now substituting into the equation: \[ \alpha^4 + \beta^4 = (-5)^2 - 2(9) = 25 - 18 = 7 \] ### Final Answer Thus, the value of \( \alpha^4 + \beta^4 \) is: \[ \boxed{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha and beta are the root of the equation x^(2) - 4x + 5 = 0 , then alpha^(2) + beta^(2) = ________

If alpha, beta are the rootsof 6x^(2)-4sqrt2 x-3=0 , then alpha^(2)beta+alpha beta^(2) is

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha, beta are the roots of x^(2)-px+q=0 then (alpha+beta)x-(alpha^(2)+beta^(2))(x^(2))/(2)+(alpha^(3)+beta^(3))(x^(3))/(3)-….oo=

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta + alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is