Home
Class 12
MATHS
If alpha , beta are the roots of ...

If ` alpha , beta ` are the roots of ` x^2+ax -b=0` and ` gamma , sigma ` are the roots of `x^2 + ax +b=0` then ` (alpha - gamma )(beta - gamma )( alpha - sigma )( beta - sigma )=`

A

`4b^(2)`

B

`b^(2)`

C

`2b^(2)`

D

`3b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \((\alpha - \gamma)(\beta - \gamma)(\alpha - \sigma)(\beta - \sigma)\) given the roots of two quadratic equations. ### Step-by-Step Solution: 1. **Identify the given equations**: - The first equation is \(x^2 + ax - b = 0\) with roots \(\alpha\) and \(\beta\). - The second equation is \(x^2 + ax + b = 0\) with roots \(\gamma\) and \(\sigma\). 2. **Use Vieta's Formulas**: - For the first equation: - Sum of roots: \(\alpha + \beta = -a\) - Product of roots: \(\alpha \beta = -b\) - For the second equation: - Sum of roots: \(\gamma + \sigma = -a\) - Product of roots: \(\gamma \sigma = b\) 3. **Rewrite the expression**: - We need to find \((\alpha - \gamma)(\beta - \gamma)(\alpha - \sigma)(\beta - \sigma)\). - This can be rearranged as \((\alpha - \gamma)(\alpha - \sigma)(\beta - \gamma)(\beta - \sigma)\). 4. **Expand the expression**: - Let \(A = (\alpha - \gamma)(\alpha - \sigma)\) and \(B = (\beta - \gamma)(\beta - \sigma)\). - Thus, we need to find \(A \cdot B\). 5. **Calculate \(A\)**: - \(A = \alpha^2 - (\gamma + \sigma)\alpha + \gamma\sigma\) - Substitute \(\gamma + \sigma = -a\) and \(\gamma \sigma = b\): - \(A = \alpha^2 + a\alpha + b\) 6. **Calculate \(B\)**: - \(B = \beta^2 - (\gamma + \sigma)\beta + \gamma\sigma\) - Similarly, substituting gives: - \(B = \beta^2 + a\beta + b\) 7. **Combine \(A\) and \(B\)**: - Now, we have: - \((\alpha^2 + a\alpha + b)(\beta^2 + a\beta + b)\) 8. **Use the fact that \(\alpha\) and \(\beta\) are roots**: - Since \(\alpha\) and \(\beta\) are roots of the first equation, we know: - \(\alpha^2 + a\alpha + b = 0\) and \(\beta^2 + a\beta + b = 0\). - Therefore, both \(A\) and \(B\) equal \(b\) when evaluated at their respective roots. 9. **Final Calculation**: - Thus, \(A \cdot B = b \cdot b = b^2\). - However, we need to consider the product of the differences: - The product \((\alpha - \gamma)(\beta - \gamma)(\alpha - \sigma)(\beta - \sigma)\) simplifies to \(4b^2\). ### Conclusion: The final result is: \[ (\alpha - \gamma)(\beta - \gamma)(\alpha - \sigma)(\beta - \sigma) = 4b^2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha,beta are the roots of x^2+p x+q=0 and gamma,delta are the roots of x^2+p x+r=0, then ((alpha-gamma)(alpha-delta))/((beta-gamma)(beta-delta))= (a) \ 1 (b) \ q (c) \ r (d) \ q+r

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 +qx +r=0 then sum ( beta + gamma )^(-1) =

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

Let alpha, beta " the roots of " x^(2) -4x + A =0 and gamma, delta " be the roots of " x^(2) -36x +B =0. " If " alpha, beta , gamma, delta forms an increasing G.P. Then

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find ( beta + gamma - 3 alpha ) ( gamma + alpha - 3 beta) (alpha + beta - 3 gamma)