Home
Class 12
MATHS
IF alpha , beta are real and alp...

IF ` alpha , beta ` are real and ` alpha ^2 , - beta ^2` are the roots of ` a ^2 x^2+x+1-a^2=0 (A gt 1)` then ` beta ^2` =

A

`a^(2)`

B

1

C

`1-a^(2)`

D

`1+a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \beta^2 \) given that \( \alpha^2 \) and \( -\beta^2 \) are the roots of the quadratic equation \( a^2 x^2 + x + 1 - a^2 = 0 \) where \( a > 1 \). ### Step-by-Step Solution: 1. **Identify the coefficients of the quadratic equation:** The equation can be rewritten as: \[ a^2 x^2 + x + (1 - a^2) = 0 \] Here, \( A = a^2 \), \( B = 1 \), and \( C = 1 - a^2 \). 2. **Use the properties of roots:** For a quadratic equation \( Ax^2 + Bx + C = 0 \), the sum of the roots \( r_1 + r_2 = -\frac{B}{A} \) and the product of the roots \( r_1 \cdot r_2 = \frac{C}{A} \). Let the roots be \( r_1 = \alpha^2 \) and \( r_2 = -\beta^2 \). 3. **Calculate the sum of the roots:** \[ \alpha^2 - \beta^2 = -\frac{1}{a^2} \] 4. **Calculate the product of the roots:** \[ \alpha^2 \cdot (-\beta^2) = \frac{1 - a^2}{a^2} \] This simplifies to: \[ -\alpha^2 \beta^2 = \frac{1 - a^2}{a^2} \] 5. **Express \( \alpha^2 \) in terms of \( \beta^2 \):** From the sum of the roots equation, we can express \( \alpha^2 \): \[ \alpha^2 = -\frac{1}{a^2} + \beta^2 \] 6. **Substitute \( \alpha^2 \) into the product of the roots equation:** Substitute \( \alpha^2 \) into the product equation: \[ -\left(-\frac{1}{a^2} + \beta^2\right) \beta^2 = \frac{1 - a^2}{a^2} \] This simplifies to: \[ \left(\frac{1}{a^2} - \beta^2\right) \beta^2 = \frac{1 - a^2}{a^2} \] 7. **Multiply through by \( a^2 \) to eliminate the denominator:** \[ (1 - a^2 \beta^2) \beta^2 = 1 - a^2 \] 8. **Rearranging gives us a quadratic in \( \beta^2 \):** \[ a^2 \beta^4 - \beta^2 + (1 - a^2) = 0 \] 9. **Use the quadratic formula to solve for \( \beta^2 \):** The quadratic formula states \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). Here \( a = a^2 \), \( b = -1 \), and \( c = 1 - a^2 \): \[ \beta^2 = \frac{1 \pm \sqrt{(-1)^2 - 4(a^2)(1 - a^2)}}{2a^2} \] Simplifying the discriminant: \[ 1 - 4a^2 + 4a^4 = 4a^4 - 4a^2 + 1 = (2a^2 - 1)^2 \] Thus, \[ \beta^2 = \frac{1 \pm (2a^2 - 1)}{2a^2} \] 10. **Find the two possible values for \( \beta^2 \):** - First case: \[ \beta^2 = \frac{2a^2}{2a^2} = 1 \] - Second case: \[ \beta^2 = \frac{1 - (2a^2 - 1)}{2a^2} = \frac{2 - 2a^2}{2a^2} = \frac{1 - a^2}{a^2} \] Since \( a > 1 \), \( 1 - a^2 < 0 \), hence this case yields a negative value which is not possible for \( \beta^2 \). ### Conclusion: Thus, the only valid solution is: \[ \beta^2 = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta ,1 are roots of x^3 -2x^2 -5x +6=0 ( alpha gt 1) then 3 alpha + beta=

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha , beta are the roots of ax^2+bx +c=0 then (1+ alpha + alpha ^2)(1+ beta + beta ^2) is

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to