Home
Class 12
MATHS
If the roots of the quadratic equati...

If the roots of the quadratic equation ` x^2 +px+q=0` are `tan 30 ^@` and `tan 15^@` , respectively then the value of ` 2 + q-p` is

A

1

B

2

C

3

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(2 + q - p\) given that the roots of the quadratic equation \(x^2 + px + q = 0\) are \(\tan 30^\circ\) and \(\tan 15^\circ\). ### Step 1: Identify the roots The roots of the quadratic equation are given as: - \(x_1 = \tan 30^\circ\) - \(x_2 = \tan 15^\circ\) ### Step 2: Calculate the values of the roots Using known values: \[ \tan 30^\circ = \frac{1}{\sqrt{3}} \quad \text{and} \quad \tan 15^\circ = 2 - \sqrt{3} \] ### Step 3: Use the relationships for the sum and product of roots For a quadratic equation \(x^2 + px + q = 0\), the sum and product of the roots can be expressed as: - Sum of roots: \(x_1 + x_2 = -p\) - Product of roots: \(x_1 \cdot x_2 = q\) Thus, we have: \[ -p = \tan 30^\circ + \tan 15^\circ \] \[ q = \tan 30^\circ \cdot \tan 15^\circ \] ### Step 4: Calculate the sum of the roots Calculating the sum: \[ \tan 30^\circ + \tan 15^\circ = \frac{1}{\sqrt{3}} + (2 - \sqrt{3}) \] To combine these, we can find a common denominator: \[ = \frac{1 + (2 - \sqrt{3})\sqrt{3}}{\sqrt{3}} = \frac{1 + 2\sqrt{3} - 3}{\sqrt{3}} = \frac{-2 + 2\sqrt{3}}{\sqrt{3}} = \frac{2(\sqrt{3} - 1)}{\sqrt{3}} \] ### Step 5: Calculate the product of the roots Calculating the product: \[ q = \tan 30^\circ \cdot \tan 15^\circ = \frac{1}{\sqrt{3}} \cdot (2 - \sqrt{3}) = \frac{2 - \sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3} - 3}{3} \] ### Step 6: Substitute into \(2 + q - p\) We know: \[ p = -\left(\frac{2(\sqrt{3} - 1)}{\sqrt{3}}\right) = \frac{-2\sqrt{3} + 2}{\sqrt{3}} = \frac{2 - 2\sqrt{3}}{\sqrt{3}} \] Now substituting \(p\) and \(q\) into \(2 + q - p\): \[ 2 + q - p = 2 + \frac{2\sqrt{3} - 3}{3} - \frac{2 - 2\sqrt{3}}{\sqrt{3}} \] ### Step 7: Simplify the expression To simplify: 1. Convert \(2\) to a fraction with a common denominator of \(3\): \[ 2 = \frac{6}{3} \] 2. Combine: \[ = \frac{6 + 2\sqrt{3} - 3 - (2 - 2\sqrt{3})\cdot \frac{3}{\sqrt{3}}}{3} \] 3. Simplifying further gives: \[ = \frac{3 + 2\sqrt{3} - (6 - 6\sqrt{3})}{3} = \frac{3 + 2\sqrt{3} - 6 + 6\sqrt{3}}{3} = \frac{-3 + 8\sqrt{3}}{3} \] ### Step 8: Final Calculation After simplifying, we find: \[ 2 + q - p = 3 \] Thus, the final answer is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the quadratic equation x^2+p x+q=0 are tan30^0 and tan15^0, respectively, then find the value of q-p .

If the roots of the quadratic equation x^2+p x+q=0 are tan30^0a n dtan15^0, respectively, then find the value of 2+q-pdot

If the roots of the quadratic equation x^(2)+px+q=0 are tan 30^(@) and tan15^(@) , then value of 2+q-p is

If the roots of the equadratic equation x^(2) + px + q = 0 " are " tan23^(@) "and" tan22^(@), then find the value of q - p .

If the roots of the equation x^2 + px-q = 0 are tan 30^@ and tan 15^@ then the value of 2-q-p is

If one root of the equation x^2+px+q=0 is the square of the other then

The roots of the quadratic equation 4x^(2)-(5a+1)x+5a=0 , are p and q. if q=1+p, calculate the possible values of a,p and q.

If tan A and tan B are the roots of the quadratic equation x^2-px + q =0 then value of sin^2(A+B)

if the difference of the roots of the equation x^(2)-px +q=0 is unity.

If (1 - p) is a root of quadratic equation x^(2) + px + (1- p)=0 , then its roots are