Home
Class 12
MATHS
If alpha, beta are the roots of x^(2) + ...

If `alpha, beta` are the roots of `x^(2) + 7x + 3 = 0` then `(alpha – 1)^(2) + (beta – 1)^(2)`=

A

59

B

69

C

39

D

49

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\alpha - 1)^2 + (\beta - 1)^2\), where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(x^2 + 7x + 3 = 0\). ### Step 1: Find the roots of the quadratic equation We can use the quadratic formula: \[ \alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For the equation \(x^2 + 7x + 3 = 0\), we have: - \(a = 1\) - \(b = 7\) - \(c = 3\) Substituting these values into the formula: \[ \alpha, \beta = \frac{-7 \pm \sqrt{7^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} \] Calculating the discriminant: \[ 7^2 - 4 \cdot 1 \cdot 3 = 49 - 12 = 37 \] Now substituting back: \[ \alpha, \beta = \frac{-7 \pm \sqrt{37}}{2} \] ### Step 2: Calculate \((\alpha - 1)^2 + (\beta - 1)^2\) Using the identity: \[ (\alpha - 1)^2 + (\beta - 1)^2 = \alpha^2 - 2\alpha + 1 + \beta^2 - 2\beta + 1 \] This simplifies to: \[ = \alpha^2 + \beta^2 - 2(\alpha + \beta) + 2 \] ### Step 3: Find \(\alpha + \beta\) and \(\alpha^2 + \beta^2\) From Vieta's formulas: \[ \alpha + \beta = -\frac{b}{a} = -7 \] \[ \alpha \beta = \frac{c}{a} = 3 \] Now, we can find \(\alpha^2 + \beta^2\) using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values: \[ \alpha^2 + \beta^2 = (-7)^2 - 2 \cdot 3 = 49 - 6 = 43 \] ### Step 4: Substitute back into the equation Now, substituting \(\alpha + \beta\) and \(\alpha^2 + \beta^2\) back into our expression: \[ (\alpha - 1)^2 + (\beta - 1)^2 = 43 - 2(-7) + 2 \] Calculating: \[ = 43 + 14 + 2 = 59 \] ### Final Answer Thus, the value of \((\alpha - 1)^2 + (\beta - 1)^2\) is: \[ \boxed{59} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of 3x^(2) + 5x - 7 = 0 then (1)/(3alpha+5)^(2)+ (1)/(3beta+5)^(2)=

If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha, beta are the roots of x^(2)+x+1=0 , then alpha^(-2)+beta^(-2) is

If alpha , beta are the roots of x^2-p(x+1)+c=0 then (1+alpha )( 1+ beta )=

If alpha , beta are the roots of ax^2+bx +c=0 then (1+ alpha + alpha ^2)(1+ beta + beta ^2) is

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha, beta are the roots of x^(2)-px+q=0 then (alpha+beta)x-(alpha^(2)+beta^(2))(x^(2))/(2)+(alpha^(3)+beta^(3))(x^(3))/(3)-….oo=

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .