Home
Class 12
MATHS
If alpha , beta are the roots of a...

If ` alpha , beta ` are the roots of `ax^2+bx +c=0` then `(1+ alpha + alpha ^2)(1+ beta + beta ^2)` is

A

`(1)/(a^(2))(a^(2)+b^(2)+c^(2)+ab+bc+ca)`

B

`(1)/(a^(2))(a^(2)+b^(2)+c^(2)-ab-bc-ca)`

C

`(1)/(a^(2))(a+b+c)`

D

`(1)/(a^(2))(a+b-c)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( (1 + \alpha + \alpha^2)(1 + \beta + \beta^2) \), where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( ax^2 + bx + c = 0 \). ### Step-by-Step Solution: 1. **Identify the roots**: Given the quadratic equation \( ax^2 + bx + c = 0 \), we know that: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} \) (let's denote this as \( S \)). - The product of the roots \( \alpha \beta = \frac{c}{a} \) (let's denote this as \( P \)). 2. **Rewrite the expression**: We need to evaluate: \[ A = (1 + \alpha + \alpha^2)(1 + \beta + \beta^2) \] 3. **Expand the expression**: Expanding \( A \): \[ A = 1 \cdot (1 + \beta + \beta^2) + \alpha \cdot (1 + \beta + \beta^2) + \alpha^2 \cdot (1 + \beta + \beta^2) \] This simplifies to: \[ A = 1 + \beta + \beta^2 + \alpha + \alpha\beta + \alpha\beta^2 + \alpha^2 + \alpha^2\beta + \alpha^2\beta^2 \] 4. **Combine like terms**: Grouping the terms: \[ A = 1 + (\alpha + \beta) + (\alpha^2 + \beta^2) + \alpha\beta + (\alpha\beta^2 + \alpha^2\beta) + \alpha^2\beta^2 \] 5. **Use identities**: We know: - \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = S^2 - 2P \) - \( \alpha\beta^2 + \alpha^2\beta = \alpha\beta(\alpha + \beta) = P \cdot S \) - \( \alpha^2\beta^2 = (\alpha\beta)^2 = P^2 \) 6. **Substitute back**: Substituting these into \( A \): \[ A = 1 + S + (S^2 - 2P) + P + P \cdot S + P^2 \] Simplifying this gives: \[ A = 1 + S + S^2 - 2P + P + P \cdot S + P^2 \] \[ A = 1 + S + S^2 - P + P \cdot S + P^2 \] 7. **Combine terms**: Now, we can express \( A \) in terms of \( a, b, c \): - Substitute \( S = -\frac{b}{a} \) and \( P = \frac{c}{a} \): \[ A = 1 - \frac{b}{a} + \left(-\frac{b}{a}\right)^2 - \frac{c}{a} + \left(-\frac{b}{a}\right) \cdot \frac{c}{a} + \left(\frac{c}{a}\right)^2 \] 8. **Simplify**: After simplification, we can find a common denominator \( a^2 \): \[ A = \frac{a^2 - ab + b^2 - ac - bc + c^2}{a^2} \] 9. **Final Expression**: Thus, we can conclude: \[ A = \frac{1}{a^2}(a^2 + b^2 + c^2 - ab - ac - bc) \] ### Final Answer: The value of \( (1 + \alpha + \alpha^2)(1 + \beta + \beta^2) \) is: \[ \frac{1}{a^2}(a^2 + b^2 + c^2 - ab - ac - bc) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha^8 beta ^5=

If alpha , beta are the roots of x^2-p(x+1)+c=0 then (1+alpha )( 1+ beta )=

If alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha, beta are the roots of ax^2 + bx + c = 0, the equation whose roots are 2 + alpha, 2 + beta is

If alpha , beta are the roots of ax^(2) + bx +c=0 , then (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3)) is equal to :

If alpha, beta are the roots of ax^(2) + bx + c = 0 and alpha + h, beta + h are the roots of px^(2) + qx + r = 0 , then h =

If alpha, beta are the roots of a x^2 + bx + c = 0 and k in R then the condition so that alpha < k < beta is :